Metamath Proof Explorer


Theorem initopropdlemlem

Description: Lemma for initopropdlem , termopropdlem , and zeroopropdlem . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropdlemlem.1
|- F Fn X
initopropdlemlem.2
|- ( ph -> -. A e. Y )
initopropdlemlem.3
|- X C_ Y
initopropdlemlem.4
|- ( ( ph /\ B e. X ) -> ( F ` B ) = (/) )
Assertion initopropdlemlem
|- ( ph -> ( F ` A ) = ( F ` B ) )

Proof

Step Hyp Ref Expression
1 initopropdlemlem.1
 |-  F Fn X
2 initopropdlemlem.2
 |-  ( ph -> -. A e. Y )
3 initopropdlemlem.3
 |-  X C_ Y
4 initopropdlemlem.4
 |-  ( ( ph /\ B e. X ) -> ( F ` B ) = (/) )
5 3 sseli
 |-  ( A e. X -> A e. Y )
6 2 5 nsyl
 |-  ( ph -> -. A e. X )
7 1 fndmi
 |-  dom F = X
8 7 eleq2i
 |-  ( A e. dom F <-> A e. X )
9 ndmfv
 |-  ( -. A e. dom F -> ( F ` A ) = (/) )
10 8 9 sylnbir
 |-  ( -. A e. X -> ( F ` A ) = (/) )
11 6 10 syl
 |-  ( ph -> ( F ` A ) = (/) )
12 11 adantr
 |-  ( ( ph /\ B e. X ) -> ( F ` A ) = (/) )
13 12 4 eqtr4d
 |-  ( ( ph /\ B e. X ) -> ( F ` A ) = ( F ` B ) )
14 11 adantr
 |-  ( ( ph /\ -. B e. X ) -> ( F ` A ) = (/) )
15 7 eleq2i
 |-  ( B e. dom F <-> B e. X )
16 ndmfv
 |-  ( -. B e. dom F -> ( F ` B ) = (/) )
17 15 16 sylnbir
 |-  ( -. B e. X -> ( F ` B ) = (/) )
18 17 adantl
 |-  ( ( ph /\ -. B e. X ) -> ( F ` B ) = (/) )
19 14 18 eqtr4d
 |-  ( ( ph /\ -. B e. X ) -> ( F ` A ) = ( F ` B ) )
20 13 19 pm2.61dan
 |-  ( ph -> ( F ` A ) = ( F ` B ) )