| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropdlemlem.1 |
⊢ 𝐹 Fn 𝑋 |
| 2 |
|
initopropdlemlem.2 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝑌 ) |
| 3 |
|
initopropdlemlem.3 |
⊢ 𝑋 ⊆ 𝑌 |
| 4 |
|
initopropdlemlem.4 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = ∅ ) |
| 5 |
3
|
sseli |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑌 ) |
| 6 |
2 5
|
nsyl |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝑋 ) |
| 7 |
1
|
fndmi |
⊢ dom 𝐹 = 𝑋 |
| 8 |
7
|
eleq2i |
⊢ ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝑋 ) |
| 9 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 10 |
8 9
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 13 |
12 4
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 14 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 15 |
7
|
eleq2i |
⊢ ( 𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝑋 ) |
| 16 |
|
ndmfv |
⊢ ( ¬ 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) = ∅ ) |
| 17 |
15 16
|
sylnbir |
⊢ ( ¬ 𝐵 ∈ 𝑋 → ( 𝐹 ‘ 𝐵 ) = ∅ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = ∅ ) |
| 19 |
14 18
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 20 |
13 19
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |