Metamath Proof Explorer


Theorem initopropdlemlem

Description: Lemma for initopropdlem , termopropdlem , and zeroopropdlem . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropdlemlem.1 𝐹 Fn 𝑋
initopropdlemlem.2 ( 𝜑 → ¬ 𝐴𝑌 )
initopropdlemlem.3 𝑋𝑌
initopropdlemlem.4 ( ( 𝜑𝐵𝑋 ) → ( 𝐹𝐵 ) = ∅ )
Assertion initopropdlemlem ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 initopropdlemlem.1 𝐹 Fn 𝑋
2 initopropdlemlem.2 ( 𝜑 → ¬ 𝐴𝑌 )
3 initopropdlemlem.3 𝑋𝑌
4 initopropdlemlem.4 ( ( 𝜑𝐵𝑋 ) → ( 𝐹𝐵 ) = ∅ )
5 3 sseli ( 𝐴𝑋𝐴𝑌 )
6 2 5 nsyl ( 𝜑 → ¬ 𝐴𝑋 )
7 1 fndmi dom 𝐹 = 𝑋
8 7 eleq2i ( 𝐴 ∈ dom 𝐹𝐴𝑋 )
9 ndmfv ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ )
10 8 9 sylnbir ( ¬ 𝐴𝑋 → ( 𝐹𝐴 ) = ∅ )
11 6 10 syl ( 𝜑 → ( 𝐹𝐴 ) = ∅ )
12 11 adantr ( ( 𝜑𝐵𝑋 ) → ( 𝐹𝐴 ) = ∅ )
13 12 4 eqtr4d ( ( 𝜑𝐵𝑋 ) → ( 𝐹𝐴 ) = ( 𝐹𝐵 ) )
14 11 adantr ( ( 𝜑 ∧ ¬ 𝐵𝑋 ) → ( 𝐹𝐴 ) = ∅ )
15 7 eleq2i ( 𝐵 ∈ dom 𝐹𝐵𝑋 )
16 ndmfv ( ¬ 𝐵 ∈ dom 𝐹 → ( 𝐹𝐵 ) = ∅ )
17 15 16 sylnbir ( ¬ 𝐵𝑋 → ( 𝐹𝐵 ) = ∅ )
18 17 adantl ( ( 𝜑 ∧ ¬ 𝐵𝑋 ) → ( 𝐹𝐵 ) = ∅ )
19 14 18 eqtr4d ( ( 𝜑 ∧ ¬ 𝐵𝑋 ) → ( 𝐹𝐴 ) = ( 𝐹𝐵 ) )
20 13 19 pm2.61dan ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐹𝐵 ) )