Metamath Proof Explorer


Theorem zeroopropdlem

Description: Lemma for zeroopropd . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
initopropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
initopropdlem.1 ( 𝜑 → ¬ 𝐶 ∈ V )
Assertion zeroopropdlem ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 initopropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
2 initopropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
3 initopropdlem.1 ( 𝜑 → ¬ 𝐶 ∈ V )
4 zeroofn ZeroO Fn Cat
5 ssv Cat ⊆ V
6 simpr ( ( 𝜑𝐷 ∈ Cat ) → 𝐷 ∈ Cat )
7 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
8 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
9 6 7 8 zerooval ( ( 𝜑𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) )
10 1 2 3 initopropdlem ( 𝜑 → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) )
11 fvprc ( ¬ 𝐶 ∈ V → ( InitO ‘ 𝐶 ) = ∅ )
12 3 11 syl ( 𝜑 → ( InitO ‘ 𝐶 ) = ∅ )
13 10 12 eqtr3d ( 𝜑 → ( InitO ‘ 𝐷 ) = ∅ )
14 13 adantr ( ( 𝜑𝐷 ∈ Cat ) → ( InitO ‘ 𝐷 ) = ∅ )
15 1 2 3 termopropdlem ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) )
16 fvprc ( ¬ 𝐶 ∈ V → ( TermO ‘ 𝐶 ) = ∅ )
17 3 16 syl ( 𝜑 → ( TermO ‘ 𝐶 ) = ∅ )
18 15 17 eqtr3d ( 𝜑 → ( TermO ‘ 𝐷 ) = ∅ )
19 18 adantr ( ( 𝜑𝐷 ∈ Cat ) → ( TermO ‘ 𝐷 ) = ∅ )
20 14 19 ineq12d ( ( 𝜑𝐷 ∈ Cat ) → ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) = ( ∅ ∩ ∅ ) )
21 inidm ( ∅ ∩ ∅ ) = ∅
22 20 21 eqtrdi ( ( 𝜑𝐷 ∈ Cat ) → ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) = ∅ )
23 9 22 eqtrd ( ( 𝜑𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ∅ )
24 4 3 5 23 initopropdlemlem ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) )