| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 2 |
|
initopropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 3 |
|
initopropdlem.1 |
⊢ ( 𝜑 → ¬ 𝐶 ∈ V ) |
| 4 |
|
zeroofn |
⊢ ZeroO Fn Cat |
| 5 |
|
ssv |
⊢ Cat ⊆ V |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 9 |
6 7 8
|
zerooval |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) ) |
| 10 |
1 2 3
|
initopropdlem |
⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) ) |
| 11 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( InitO ‘ 𝐶 ) = ∅ ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = ∅ ) |
| 13 |
10 12
|
eqtr3d |
⊢ ( 𝜑 → ( InitO ‘ 𝐷 ) = ∅ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( InitO ‘ 𝐷 ) = ∅ ) |
| 15 |
1 2 3
|
termopropdlem |
⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 16 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( TermO ‘ 𝐶 ) = ∅ ) |
| 17 |
3 16
|
syl |
⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ∅ ) |
| 18 |
15 17
|
eqtr3d |
⊢ ( 𝜑 → ( TermO ‘ 𝐷 ) = ∅ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( TermO ‘ 𝐷 ) = ∅ ) |
| 20 |
14 19
|
ineq12d |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) = ( ∅ ∩ ∅ ) ) |
| 21 |
|
inidm |
⊢ ( ∅ ∩ ∅ ) = ∅ |
| 22 |
20 21
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) = ∅ ) |
| 23 |
9 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ∅ ) |
| 24 |
4 3 5 23
|
initopropdlemlem |
⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |