Metamath Proof Explorer


Theorem zeroopropdlem

Description: Lemma for zeroopropd . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
initopropd.2 φ comp 𝑓 C = comp 𝑓 D
initopropdlem.1 φ ¬ C V
Assertion zeroopropdlem φ ZeroO C = ZeroO D

Proof

Step Hyp Ref Expression
1 initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 initopropd.2 φ comp 𝑓 C = comp 𝑓 D
3 initopropdlem.1 φ ¬ C V
4 zeroofn ZeroO Fn Cat
5 ssv Cat V
6 simpr φ D Cat D Cat
7 eqid Base D = Base D
8 eqid Hom D = Hom D
9 6 7 8 zerooval φ D Cat ZeroO D = InitO D TermO D
10 1 2 3 initopropdlem φ InitO C = InitO D
11 fvprc ¬ C V InitO C =
12 3 11 syl φ InitO C =
13 10 12 eqtr3d φ InitO D =
14 13 adantr φ D Cat InitO D =
15 1 2 3 termopropdlem φ TermO C = TermO D
16 fvprc ¬ C V TermO C =
17 3 16 syl φ TermO C =
18 15 17 eqtr3d φ TermO D =
19 18 adantr φ D Cat TermO D =
20 14 19 ineq12d φ D Cat InitO D TermO D =
21 inidm =
22 20 21 eqtrdi φ D Cat InitO D TermO D =
23 9 22 eqtrd φ D Cat ZeroO D =
24 4 3 5 23 initopropdlemlem φ ZeroO C = ZeroO D