Metamath Proof Explorer


Theorem zeroopropd

Description: Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
initopropd.2 φ comp 𝑓 C = comp 𝑓 D
Assertion zeroopropd φ ZeroO C = ZeroO D

Proof

Step Hyp Ref Expression
1 initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 initopropd.2 φ comp 𝑓 C = comp 𝑓 D
3 1 adantr φ ¬ C V Hom 𝑓 C = Hom 𝑓 D
4 2 adantr φ ¬ C V comp 𝑓 C = comp 𝑓 D
5 simpr φ ¬ C V ¬ C V
6 3 4 5 zeroopropdlem φ ¬ C V ZeroO C = ZeroO D
7 1 adantr φ ¬ D V Hom 𝑓 C = Hom 𝑓 D
8 7 eqcomd φ ¬ D V Hom 𝑓 D = Hom 𝑓 C
9 2 adantr φ ¬ D V comp 𝑓 C = comp 𝑓 D
10 9 eqcomd φ ¬ D V comp 𝑓 D = comp 𝑓 C
11 simpr φ ¬ D V ¬ D V
12 8 10 11 zeroopropdlem φ ¬ D V ZeroO D = ZeroO C
13 12 eqcomd φ ¬ D V ZeroO C = ZeroO D
14 1 ad2antrr φ C V D V C Cat Hom 𝑓 C = Hom 𝑓 D
15 2 ad2antrr φ C V D V C Cat comp 𝑓 C = comp 𝑓 D
16 14 15 initopropd φ C V D V C Cat InitO C = InitO D
17 14 15 termopropd φ C V D V C Cat TermO C = TermO D
18 16 17 ineq12d φ C V D V C Cat InitO C TermO C = InitO D TermO D
19 simpr φ C V D V C Cat C Cat
20 eqid Base C = Base C
21 eqid Hom C = Hom C
22 19 20 21 zerooval φ C V D V C Cat ZeroO C = InitO C TermO C
23 1 adantr φ C V D V Hom 𝑓 C = Hom 𝑓 D
24 2 adantr φ C V D V comp 𝑓 C = comp 𝑓 D
25 simprl φ C V D V C V
26 simprr φ C V D V D V
27 23 24 25 26 catpropd φ C V D V C Cat D Cat
28 27 biimpa φ C V D V C Cat D Cat
29 eqid Base D = Base D
30 eqid Hom D = Hom D
31 28 29 30 zerooval φ C V D V C Cat ZeroO D = InitO D TermO D
32 18 22 31 3eqtr4d φ C V D V C Cat ZeroO C = ZeroO D
33 27 pm5.32i φ C V D V C Cat φ C V D V D Cat
34 33 32 sylbir φ C V D V D Cat ZeroO C = ZeroO D
35 zeroofn ZeroO Fn Cat
36 35 fndmi dom ZeroO = Cat
37 36 eleq2i C dom ZeroO C Cat
38 ndmfv ¬ C dom ZeroO ZeroO C =
39 37 38 sylnbir ¬ C Cat ZeroO C =
40 39 ad2antrl φ C V D V ¬ C Cat ¬ D Cat ZeroO C =
41 36 eleq2i D dom ZeroO D Cat
42 ndmfv ¬ D dom ZeroO ZeroO D =
43 41 42 sylnbir ¬ D Cat ZeroO D =
44 43 ad2antll φ C V D V ¬ C Cat ¬ D Cat ZeroO D =
45 40 44 eqtr4d φ C V D V ¬ C Cat ¬ D Cat ZeroO C = ZeroO D
46 32 34 45 pm2.61ddan φ C V D V ZeroO C = ZeroO D
47 6 13 46 pm2.61dda φ ZeroO C = ZeroO D