| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
|
| 2 |
|
initopropd.2 |
|
| 3 |
1
|
adantr |
|
| 4 |
2
|
adantr |
|
| 5 |
|
simpr |
|
| 6 |
3 4 5
|
zeroopropdlem |
|
| 7 |
1
|
adantr |
|
| 8 |
7
|
eqcomd |
|
| 9 |
2
|
adantr |
|
| 10 |
9
|
eqcomd |
|
| 11 |
|
simpr |
|
| 12 |
8 10 11
|
zeroopropdlem |
|
| 13 |
12
|
eqcomd |
|
| 14 |
1
|
ad2antrr |
|
| 15 |
2
|
ad2antrr |
|
| 16 |
14 15
|
initopropd |
|
| 17 |
14 15
|
termopropd |
|
| 18 |
16 17
|
ineq12d |
|
| 19 |
|
simpr |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
19 20 21
|
zerooval |
|
| 23 |
1
|
adantr |
|
| 24 |
2
|
adantr |
|
| 25 |
|
simprl |
|
| 26 |
|
simprr |
|
| 27 |
23 24 25 26
|
catpropd |
|
| 28 |
27
|
biimpa |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
28 29 30
|
zerooval |
|
| 32 |
18 22 31
|
3eqtr4d |
|
| 33 |
27
|
pm5.32i |
|
| 34 |
33 32
|
sylbir |
|
| 35 |
|
zeroofn |
|
| 36 |
35
|
fndmi |
|
| 37 |
36
|
eleq2i |
|
| 38 |
|
ndmfv |
|
| 39 |
37 38
|
sylnbir |
|
| 40 |
39
|
ad2antrl |
|
| 41 |
36
|
eleq2i |
|
| 42 |
|
ndmfv |
|
| 43 |
41 42
|
sylnbir |
|
| 44 |
43
|
ad2antll |
|
| 45 |
40 44
|
eqtr4d |
|
| 46 |
32 34 45
|
pm2.61ddan |
|
| 47 |
6 13 46
|
pm2.61dda |
|