Metamath Proof Explorer


Theorem termopropd

Description: Two structures with the same base, hom-sets and composition operation have the same terminal objects. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
initopropd.2 φ comp 𝑓 C = comp 𝑓 D
Assertion termopropd φ TermO C = TermO D

Proof

Step Hyp Ref Expression
1 initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 initopropd.2 φ comp 𝑓 C = comp 𝑓 D
3 1 adantr φ ¬ C V Hom 𝑓 C = Hom 𝑓 D
4 2 adantr φ ¬ C V comp 𝑓 C = comp 𝑓 D
5 simpr φ ¬ C V ¬ C V
6 3 4 5 termopropdlem φ ¬ C V TermO C = TermO D
7 1 adantr φ ¬ D V Hom 𝑓 C = Hom 𝑓 D
8 7 eqcomd φ ¬ D V Hom 𝑓 D = Hom 𝑓 C
9 2 adantr φ ¬ D V comp 𝑓 C = comp 𝑓 D
10 9 eqcomd φ ¬ D V comp 𝑓 D = comp 𝑓 C
11 simpr φ ¬ D V ¬ D V
12 8 10 11 termopropdlem φ ¬ D V TermO D = TermO C
13 12 eqcomd φ ¬ D V TermO C = TermO D
14 1 adantr φ C V D V Hom 𝑓 C = Hom 𝑓 D
15 14 adantr φ C V D V C Cat Hom 𝑓 C = Hom 𝑓 D
16 eqid Hom C = Hom C
17 eqid Hom D = Hom D
18 eqidd φ C V D V C Cat Base C = Base C
19 15 homfeqbas φ C V D V C Cat Base C = Base D
20 16 17 18 19 homfeq φ C V D V C Cat Hom 𝑓 C = Hom 𝑓 D b Base C a Base C b Hom C a = b Hom D a
21 ralcom b Base C a Base C b Hom C a = b Hom D a a Base C b Base C b Hom C a = b Hom D a
22 20 21 bitrdi φ C V D V C Cat Hom 𝑓 C = Hom 𝑓 D a Base C b Base C b Hom C a = b Hom D a
23 15 22 mpbid φ C V D V C Cat a Base C b Base C b Hom C a = b Hom D a
24 23 r19.21bi φ C V D V C Cat a Base C b Base C b Hom C a = b Hom D a
25 24 r19.21bi φ C V D V C Cat a Base C b Base C b Hom C a = b Hom D a
26 25 eleq2d φ C V D V C Cat a Base C b Base C h b Hom C a h b Hom D a
27 26 eubidv φ C V D V C Cat a Base C b Base C ∃! h h b Hom C a ∃! h h b Hom D a
28 27 ralbidva φ C V D V C Cat a Base C b Base C ∃! h h b Hom C a b Base C ∃! h h b Hom D a
29 28 pm5.32da φ C V D V C Cat a Base C b Base C ∃! h h b Hom C a a Base C b Base C ∃! h h b Hom D a
30 19 eleq2d φ C V D V C Cat a Base C a Base D
31 19 raleqdv φ C V D V C Cat b Base C ∃! h h b Hom D a b Base D ∃! h h b Hom D a
32 30 31 anbi12d φ C V D V C Cat a Base C b Base C ∃! h h b Hom D a a Base D b Base D ∃! h h b Hom D a
33 29 32 bitrd φ C V D V C Cat a Base C b Base C ∃! h h b Hom C a a Base D b Base D ∃! h h b Hom D a
34 33 rabbidva2 φ C V D V C Cat a Base C | b Base C ∃! h h b Hom C a = a Base D | b Base D ∃! h h b Hom D a
35 simpr φ C V D V C Cat C Cat
36 eqid Base C = Base C
37 35 36 16 termoval φ C V D V C Cat TermO C = a Base C | b Base C ∃! h h b Hom C a
38 2 adantr φ C V D V comp 𝑓 C = comp 𝑓 D
39 simprl φ C V D V C V
40 simprr φ C V D V D V
41 14 38 39 40 catpropd φ C V D V C Cat D Cat
42 41 biimpa φ C V D V C Cat D Cat
43 eqid Base D = Base D
44 42 43 17 termoval φ C V D V C Cat TermO D = a Base D | b Base D ∃! h h b Hom D a
45 34 37 44 3eqtr4d φ C V D V C Cat TermO C = TermO D
46 41 pm5.32i φ C V D V C Cat φ C V D V D Cat
47 46 45 sylbir φ C V D V D Cat TermO C = TermO D
48 termofn TermO Fn Cat
49 48 fndmi dom TermO = Cat
50 49 eleq2i C dom TermO C Cat
51 ndmfv ¬ C dom TermO TermO C =
52 50 51 sylnbir ¬ C Cat TermO C =
53 52 ad2antrl φ C V D V ¬ C Cat ¬ D Cat TermO C =
54 49 eleq2i D dom TermO D Cat
55 ndmfv ¬ D dom TermO TermO D =
56 54 55 sylnbir ¬ D Cat TermO D =
57 56 ad2antll φ C V D V ¬ C Cat ¬ D Cat TermO D =
58 53 57 eqtr4d φ C V D V ¬ C Cat ¬ D Cat TermO C = TermO D
59 45 47 58 pm2.61ddan φ C V D V TermO C = TermO D
60 6 13 59 pm2.61dda φ TermO C = TermO D