Metamath Proof Explorer


Theorem termopropdlem

Description: Lemma for termopropd . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
initopropd.2 φ comp 𝑓 C = comp 𝑓 D
initopropdlem.1 φ ¬ C V
Assertion termopropdlem φ TermO C = TermO D

Proof

Step Hyp Ref Expression
1 initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 initopropd.2 φ comp 𝑓 C = comp 𝑓 D
3 initopropdlem.1 φ ¬ C V
4 termofn TermO Fn Cat
5 ssv Cat V
6 simpr φ D Cat D Cat
7 eqid Base D = Base D
8 eqid Hom D = Hom D
9 6 7 8 termoval φ D Cat TermO D = a Base D | b Base D ∃! h h b Hom D a
10 fvprc ¬ C V Hom 𝑓 C =
11 3 10 syl φ Hom 𝑓 C =
12 1 11 eqtr3d φ Hom 𝑓 D =
13 homf0 Base D = Hom 𝑓 D =
14 12 13 sylibr φ Base D =
15 14 rabeqdv φ a Base D | b Base D ∃! h h b Hom D a = a | b Base D ∃! h h b Hom D a
16 rab0 a | b Base D ∃! h h b Hom D a =
17 15 16 eqtrdi φ a Base D | b Base D ∃! h h b Hom D a =
18 17 adantr φ D Cat a Base D | b Base D ∃! h h b Hom D a =
19 9 18 eqtrd φ D Cat TermO D =
20 4 3 5 19 initopropdlemlem φ TermO C = TermO D