Metamath Proof Explorer


Theorem initopropdlemlem

Description: Lemma for initopropdlem , termopropdlem , and zeroopropdlem . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropdlemlem.1 F Fn X
initopropdlemlem.2 φ ¬ A Y
initopropdlemlem.3 X Y
initopropdlemlem.4 φ B X F B =
Assertion initopropdlemlem φ F A = F B

Proof

Step Hyp Ref Expression
1 initopropdlemlem.1 F Fn X
2 initopropdlemlem.2 φ ¬ A Y
3 initopropdlemlem.3 X Y
4 initopropdlemlem.4 φ B X F B =
5 3 sseli A X A Y
6 2 5 nsyl φ ¬ A X
7 1 fndmi dom F = X
8 7 eleq2i A dom F A X
9 ndmfv ¬ A dom F F A =
10 8 9 sylnbir ¬ A X F A =
11 6 10 syl φ F A =
12 11 adantr φ B X F A =
13 12 4 eqtr4d φ B X F A = F B
14 11 adantr φ ¬ B X F A =
15 7 eleq2i B dom F B X
16 ndmfv ¬ B dom F F B =
17 15 16 sylnbir ¬ B X F B =
18 17 adantl φ ¬ B X F B =
19 14 18 eqtr4d φ ¬ B X F A = F B
20 13 19 pm2.61dan φ F A = F B