Metamath Proof Explorer


Theorem initopropdlem

Description: Lemma for initopropd . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
initopropd.2 φ comp 𝑓 C = comp 𝑓 D
initopropdlem.1 φ ¬ C V
Assertion initopropdlem φ InitO C = InitO D

Proof

Step Hyp Ref Expression
1 initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 initopropd.2 φ comp 𝑓 C = comp 𝑓 D
3 initopropdlem.1 φ ¬ C V
4 initofn InitO Fn Cat
5 ssv Cat V
6 simpr φ D Cat D Cat
7 eqid Base D = Base D
8 eqid Hom D = Hom D
9 6 7 8 initoval φ D Cat InitO D = a Base D | b Base D ∃! h h a Hom D b
10 fvprc ¬ C V Hom 𝑓 C =
11 3 10 syl φ Hom 𝑓 C =
12 1 11 eqtr3d φ Hom 𝑓 D =
13 homf0 Base D = Hom 𝑓 D =
14 12 13 sylibr φ Base D =
15 14 rabeqdv φ a Base D | b Base D ∃! h h a Hom D b = a | b Base D ∃! h h a Hom D b
16 rab0 a | b Base D ∃! h h a Hom D b =
17 15 16 eqtrdi φ a Base D | b Base D ∃! h h a Hom D b =
18 17 adantr φ D Cat a Base D | b Base D ∃! h h a Hom D b =
19 9 18 eqtrd φ D Cat InitO D =
20 4 3 5 19 initopropdlemlem φ InitO C = InitO D