Metamath Proof Explorer


Theorem initoval

Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses initoval.c φCCat
initoval.b B=BaseC
initoval.h H=HomC
Assertion initoval φInitOC=aB|bB∃!hhaHb

Proof

Step Hyp Ref Expression
1 initoval.c φCCat
2 initoval.b B=BaseC
3 initoval.h H=HomC
4 df-inito InitO=cCataBasec|bBasec∃!hhaHomcb
5 fveq2 c=CBasec=BaseC
6 5 2 eqtr4di c=CBasec=B
7 fveq2 c=CHomc=HomC
8 7 3 eqtr4di c=CHomc=H
9 8 oveqd c=CaHomcb=aHb
10 9 eleq2d c=ChaHomcbhaHb
11 10 eubidv c=C∃!hhaHomcb∃!hhaHb
12 6 11 raleqbidv c=CbBasec∃!hhaHomcbbB∃!hhaHb
13 6 12 rabeqbidv c=CaBasec|bBasec∃!hhaHomcb=aB|bB∃!hhaHb
14 2 fvexi BV
15 14 rabex aB|bB∃!hhaHbV
16 15 a1i φaB|bB∃!hhaHbV
17 4 13 1 16 fvmptd3 φInitOC=aB|bB∃!hhaHb