Step |
Hyp |
Ref |
Expression |
1 |
|
initoval.c |
|- ( ph -> C e. Cat ) |
2 |
|
initoval.b |
|- B = ( Base ` C ) |
3 |
|
initoval.h |
|- H = ( Hom ` C ) |
4 |
|
df-inito |
|- InitO = ( c e. Cat |-> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } ) |
5 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
6 |
5 2
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
7 |
|
fveq2 |
|- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
8 |
7 3
|
eqtr4di |
|- ( c = C -> ( Hom ` c ) = H ) |
9 |
8
|
oveqd |
|- ( c = C -> ( a ( Hom ` c ) b ) = ( a H b ) ) |
10 |
9
|
eleq2d |
|- ( c = C -> ( h e. ( a ( Hom ` c ) b ) <-> h e. ( a H b ) ) ) |
11 |
10
|
eubidv |
|- ( c = C -> ( E! h h e. ( a ( Hom ` c ) b ) <-> E! h h e. ( a H b ) ) ) |
12 |
6 11
|
raleqbidv |
|- ( c = C -> ( A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) <-> A. b e. B E! h h e. ( a H b ) ) ) |
13 |
6 12
|
rabeqbidv |
|- ( c = C -> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } = { a e. B | A. b e. B E! h h e. ( a H b ) } ) |
14 |
2
|
fvexi |
|- B e. _V |
15 |
14
|
rabex |
|- { a e. B | A. b e. B E! h h e. ( a H b ) } e. _V |
16 |
15
|
a1i |
|- ( ph -> { a e. B | A. b e. B E! h h e. ( a H b ) } e. _V ) |
17 |
4 13 1 16
|
fvmptd3 |
|- ( ph -> ( InitO ` C ) = { a e. B | A. b e. B E! h h e. ( a H b ) } ) |