Step |
Hyp |
Ref |
Expression |
1 |
|
initoval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
initoval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
initoval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
df-inito |
⊢ InitO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
5 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
6 |
5 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
7 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
8 |
7 3
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
9 |
8
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) = ( 𝑎 𝐻 𝑏 ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑐 = 𝐶 → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ↔ ℎ ∈ ( 𝑎 𝐻 𝑏 ) ) ) |
11 |
10
|
eubidv |
⊢ ( 𝑐 = 𝐶 → ( ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ↔ ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) ) ) |
12 |
6 11
|
raleqbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) ) ) |
13 |
6 12
|
rabeqbidv |
⊢ ( 𝑐 = 𝐶 → { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } = { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ) |
14 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
15 |
14
|
rabex |
⊢ { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ∈ V ) |
17 |
4 13 1 16
|
fvmptd3 |
⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ) |