Metamath Proof Explorer


Definition df-inito

Description: An object A is said to be an initial object provided that for each object B there is exactly one morphism from A to B. Definition 7.1 in Adamek p. 101, or definition in Lang p. 57 (called "a universally repelling object" there). See dfinito2 and dfinito3 for alternate definitions depending on df-termo . (Contributed by AV, 3-Apr-2020)

Ref Expression
Assertion df-inito InitO=cCataBasec|bBasec∃!hhaHomcb

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinito classInitO
1 vc setvarc
2 ccat classCat
3 va setvara
4 cbs classBase
5 1 cv setvarc
6 5 4 cfv classBasec
7 vb setvarb
8 vh setvarh
9 8 cv setvarh
10 3 cv setvara
11 chom classHom
12 5 11 cfv classHomc
13 7 cv setvarb
14 10 13 12 co classaHomcb
15 9 14 wcel wffhaHomcb
16 15 8 weu wff∃!hhaHomcb
17 16 7 6 wral wffbBasec∃!hhaHomcb
18 17 3 6 crab classaBasec|bBasec∃!hhaHomcb
19 1 2 18 cmpt classcCataBasec|bBasec∃!hhaHomcb
20 0 19 wceq wffInitO=cCataBasec|bBasec∃!hhaHomcb