Metamath Proof Explorer


Theorem termoval

Description: The value of the terminal object function, i.e. the set of all terminal objects of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses initoval.c φCCat
initoval.b B=BaseC
initoval.h H=HomC
Assertion termoval φTermOC=aB|bB∃!hhbHa

Proof

Step Hyp Ref Expression
1 initoval.c φCCat
2 initoval.b B=BaseC
3 initoval.h H=HomC
4 df-termo TermO=cCataBasec|bBasec∃!hhbHomca
5 fveq2 c=CBasec=BaseC
6 5 2 eqtr4di c=CBasec=B
7 fveq2 c=CHomc=HomC
8 7 3 eqtr4di c=CHomc=H
9 8 oveqd c=CbHomca=bHa
10 9 eleq2d c=ChbHomcahbHa
11 10 eubidv c=C∃!hhbHomca∃!hhbHa
12 6 11 raleqbidv c=CbBasec∃!hhbHomcabB∃!hhbHa
13 6 12 rabeqbidv c=CaBasec|bBasec∃!hhbHomca=aB|bB∃!hhbHa
14 2 fvexi BV
15 14 rabex aB|bB∃!hhbHaV
16 15 a1i φaB|bB∃!hhbHaV
17 4 13 1 16 fvmptd3 φTermOC=aB|bB∃!hhbHa