Metamath Proof Explorer


Theorem termoval

Description: The value of the terminal object function, i.e. the set of all terminal objects of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses initoval.c φ C Cat
initoval.b B = Base C
initoval.h H = Hom C
Assertion termoval φ TermO C = a B | b B ∃! h h b H a

Proof

Step Hyp Ref Expression
1 initoval.c φ C Cat
2 initoval.b B = Base C
3 initoval.h H = Hom C
4 df-termo TermO = c Cat a Base c | b Base c ∃! h h b Hom c a
5 fveq2 c = C Base c = Base C
6 5 2 eqtr4di c = C Base c = B
7 fveq2 c = C Hom c = Hom C
8 7 3 eqtr4di c = C Hom c = H
9 8 oveqd c = C b Hom c a = b H a
10 9 eleq2d c = C h b Hom c a h b H a
11 10 eubidv c = C ∃! h h b Hom c a ∃! h h b H a
12 6 11 raleqbidv c = C b Base c ∃! h h b Hom c a b B ∃! h h b H a
13 6 12 rabeqbidv c = C a Base c | b Base c ∃! h h b Hom c a = a B | b B ∃! h h b H a
14 2 fvexi B V
15 14 rabex a B | b B ∃! h h b H a V
16 15 a1i φ a B | b B ∃! h h b H a V
17 4 13 1 16 fvmptd3 φ TermO C = a B | b B ∃! h h b H a