Metamath Proof Explorer


Definition df-termo

Description: An object A is called a terminal object provided that for each object B there is exactly one morphism from B to A. Definition 7.4 in Adamek p. 102, or definition in Lang p. 57 (called "a universally attracting object" there). See dftermo2 and dftermo3 for alternate definitions depending on df-inito . (Contributed by AV, 3-Apr-2020)

Ref Expression
Assertion df-termo TermO=cCataBasec|bBasec∃!hhbHomca

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctermo classTermO
1 vc setvarc
2 ccat classCat
3 va setvara
4 cbs classBase
5 1 cv setvarc
6 5 4 cfv classBasec
7 vb setvarb
8 vh setvarh
9 8 cv setvarh
10 7 cv setvarb
11 chom classHom
12 5 11 cfv classHomc
13 3 cv setvara
14 10 13 12 co classbHomca
15 9 14 wcel wffhbHomca
16 15 8 weu wff∃!hhbHomca
17 16 7 6 wral wffbBasec∃!hhbHomca
18 17 3 6 crab classaBasec|bBasec∃!hhbHomca
19 1 2 18 cmpt classcCataBasec|bBasec∃!hhbHomca
20 0 19 wceq wffTermO=cCataBasec|bBasec∃!hhbHomca