Metamath Proof Explorer


Theorem dftermo3

Description: An alternate definition of df-termo depending on df-inito , without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion dftermo3 TermO = InitO oppCat Cat

Proof

Step Hyp Ref Expression
1 fvres c Cat oppCat Cat c = oppCat c
2 1 fveq2d c Cat InitO oppCat Cat c = InitO oppCat c
3 2 mpteq2ia c Cat InitO oppCat Cat c = c Cat InitO oppCat c
4 initofn InitO Fn Cat
5 dffn2 InitO Fn Cat InitO : Cat V
6 4 5 mpbi InitO : Cat V
7 oppccatf oppCat Cat : Cat Cat
8 fcompt InitO : Cat V oppCat Cat : Cat Cat InitO oppCat Cat = c Cat InitO oppCat Cat c
9 6 7 8 mp2an InitO oppCat Cat = c Cat InitO oppCat Cat c
10 dftermo2 TermO = c Cat InitO oppCat c
11 3 9 10 3eqtr4ri TermO = InitO oppCat Cat