Step |
Hyp |
Ref |
Expression |
1 |
|
fvres |
⊢ ( 𝑐 ∈ Cat → ( ( oppCat ↾ Cat ) ‘ 𝑐 ) = ( oppCat ‘ 𝑐 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝑐 ∈ Cat → ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) = ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) |
3 |
2
|
mpteq2ia |
⊢ ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) ) = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) |
4 |
|
initofn |
⊢ InitO Fn Cat |
5 |
|
dffn2 |
⊢ ( InitO Fn Cat ↔ InitO : Cat ⟶ V ) |
6 |
4 5
|
mpbi |
⊢ InitO : Cat ⟶ V |
7 |
|
oppccatf |
⊢ ( oppCat ↾ Cat ) : Cat ⟶ Cat |
8 |
|
fcompt |
⊢ ( ( InitO : Cat ⟶ V ∧ ( oppCat ↾ Cat ) : Cat ⟶ Cat ) → ( InitO ∘ ( oppCat ↾ Cat ) ) = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) ) ) |
9 |
6 7 8
|
mp2an |
⊢ ( InitO ∘ ( oppCat ↾ Cat ) ) = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( ( oppCat ↾ Cat ) ‘ 𝑐 ) ) ) |
10 |
|
dftermo2 |
⊢ TermO = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) |
11 |
3 9 10
|
3eqtr4ri |
⊢ TermO = ( InitO ∘ ( oppCat ↾ Cat ) ) |