Metamath Proof Explorer


Theorem initoo

Description: An initial object is an object. (Contributed by AV, 14-Apr-2020)

Ref Expression
Assertion initoo CCatOInitOCOBaseC

Proof

Step Hyp Ref Expression
1 eqid BaseC=BaseC
2 eqid HomC=HomC
3 id CCatCCat
4 1 2 3 isinitoi CCatOInitOCOBaseCbBaseC∃!hhOHomCb
5 4 simpld CCatOInitOCOBaseC
6 5 ex CCatOInitOCOBaseC