Metamath Proof Explorer


Theorem isinitoi

Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020)

Ref Expression
Hypotheses isinitoi.b B = Base C
isinitoi.h H = Hom C
isinitoi.c φ C Cat
Assertion isinitoi φ O InitO C O B b B ∃! h h O H b

Proof

Step Hyp Ref Expression
1 isinitoi.b B = Base C
2 isinitoi.h H = Hom C
3 isinitoi.c φ C Cat
4 3 1 2 initoval φ InitO C = a B | b B ∃! h h a H b
5 4 eleq2d φ O InitO C O a B | b B ∃! h h a H b
6 elrabi O a B | b B ∃! h h a H b O B
7 5 6 syl6bi φ O InitO C O B
8 7 imp φ O InitO C O B
9 3 adantr φ O B C Cat
10 simpr φ O B O B
11 1 2 9 10 isinito φ O B O InitO C b B ∃! h h O H b
12 11 biimpd φ O B O InitO C b B ∃! h h O H b
13 12 impancom φ O InitO C O B b B ∃! h h O H b
14 8 13 jcai φ O InitO C O B b B ∃! h h O H b