Step |
Hyp |
Ref |
Expression |
1 |
|
isinitoi.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isinitoi.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isinitoi.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
3 1 2
|
initoval |
⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ) |
5 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ↔ 𝑂 ∈ { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ) ) |
6 |
|
elrabi |
⊢ ( 𝑂 ∈ { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } → 𝑂 ∈ 𝐵 ) |
7 |
5 6
|
syl6bi |
⊢ ( 𝜑 → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) → 𝑂 ∈ 𝐵 ) ) |
8 |
7
|
imp |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) → 𝑂 ∈ 𝐵 ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → 𝑂 ∈ 𝐵 ) |
11 |
1 2 9 10
|
isinito |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑏 ) ) ) |
12 |
11
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ 𝐵 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) → ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑏 ) ) ) |
13 |
12
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝑂 ∈ 𝐵 → ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑏 ) ) ) |
14 |
8 13
|
jcai |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝑂 ∈ 𝐵 ∧ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑂 𝐻 𝑏 ) ) ) |