Metamath Proof Explorer


Theorem istermoi

Description: Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses isinitoi.b 𝐵 = ( Base ‘ 𝐶 )
isinitoi.h 𝐻 = ( Hom ‘ 𝐶 )
isinitoi.c ( 𝜑𝐶 ∈ Cat )
Assertion istermoi ( ( 𝜑𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂𝐵 ∧ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑂 ) ) )

Proof

Step Hyp Ref Expression
1 isinitoi.b 𝐵 = ( Base ‘ 𝐶 )
2 isinitoi.h 𝐻 = ( Hom ‘ 𝐶 )
3 isinitoi.c ( 𝜑𝐶 ∈ Cat )
4 3 1 2 termoval ( 𝜑 → ( TermO ‘ 𝐶 ) = { 𝑎𝐵 ∣ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑎 ) } )
5 4 eleq2d ( 𝜑 → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) ↔ 𝑂 ∈ { 𝑎𝐵 ∣ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑎 ) } ) )
6 elrabi ( 𝑂 ∈ { 𝑎𝐵 ∣ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑎 ) } → 𝑂𝐵 )
7 5 6 syl6bi ( 𝜑 → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝑂𝐵 ) )
8 7 imp ( ( 𝜑𝑂 ∈ ( TermO ‘ 𝐶 ) ) → 𝑂𝐵 )
9 3 adantr ( ( 𝜑𝑂𝐵 ) → 𝐶 ∈ Cat )
10 simpr ( ( 𝜑𝑂𝐵 ) → 𝑂𝐵 )
11 1 2 9 10 istermo ( ( 𝜑𝑂𝐵 ) → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) ↔ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑂 ) ) )
12 11 biimpd ( ( 𝜑𝑂𝐵 ) → ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑂 ) ) )
13 12 impancom ( ( 𝜑𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂𝐵 → ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑂 ) ) )
14 8 13 jcai ( ( 𝜑𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂𝐵 ∧ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 𝐻 𝑂 ) ) )