Metamath Proof Explorer


Theorem isinito

Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses isinito.b B=BaseC
isinito.h H=HomC
isinito.c φCCat
isinito.i φIB
Assertion isinito φIInitOCbB∃!hhIHb

Proof

Step Hyp Ref Expression
1 isinito.b B=BaseC
2 isinito.h H=HomC
3 isinito.c φCCat
4 isinito.i φIB
5 3 1 2 initoval φInitOC=iB|bB∃!hhiHb
6 5 eleq2d φIInitOCIiB|bB∃!hhiHb
7 oveq1 i=IiHb=IHb
8 7 eleq2d i=IhiHbhIHb
9 8 eubidv i=I∃!hhiHb∃!hhIHb
10 9 ralbidv i=IbB∃!hhiHbbB∃!hhIHb
11 10 elrab3 IBIiB|bB∃!hhiHbbB∃!hhIHb
12 4 11 syl φIiB|bB∃!hhiHbbB∃!hhIHb
13 6 12 bitrd φIInitOCbB∃!hhIHb