Metamath Proof Explorer


Theorem isinito

Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses isinito.b B = Base C
isinito.h H = Hom C
isinito.c φ C Cat
isinito.i φ I B
Assertion isinito φ I InitO C b B ∃! h h I H b

Proof

Step Hyp Ref Expression
1 isinito.b B = Base C
2 isinito.h H = Hom C
3 isinito.c φ C Cat
4 isinito.i φ I B
5 3 1 2 initoval φ InitO C = i B | b B ∃! h h i H b
6 5 eleq2d φ I InitO C I i B | b B ∃! h h i H b
7 oveq1 i = I i H b = I H b
8 7 eleq2d i = I h i H b h I H b
9 8 eubidv i = I ∃! h h i H b ∃! h h I H b
10 9 ralbidv i = I b B ∃! h h i H b b B ∃! h h I H b
11 10 elrab3 I B I i B | b B ∃! h h i H b b B ∃! h h I H b
12 4 11 syl φ I i B | b B ∃! h h i H b b B ∃! h h I H b
13 6 12 bitrd φ I InitO C b B ∃! h h I H b