Metamath Proof Explorer


Theorem initopropdlem

Description: Lemma for initopropd . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses initopropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
initopropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
initopropdlem.1 ( 𝜑 → ¬ 𝐶 ∈ V )
Assertion initopropdlem ( 𝜑 → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 initopropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
2 initopropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
3 initopropdlem.1 ( 𝜑 → ¬ 𝐶 ∈ V )
4 initofn InitO Fn Cat
5 ssv Cat ⊆ V
6 simpr ( ( 𝜑𝐷 ∈ Cat ) → 𝐷 ∈ Cat )
7 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
8 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
9 6 7 8 initoval ( ( 𝜑𝐷 ∈ Cat ) → ( InitO ‘ 𝐷 ) = { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } )
10 fvprc ( ¬ 𝐶 ∈ V → ( Homf𝐶 ) = ∅ )
11 3 10 syl ( 𝜑 → ( Homf𝐶 ) = ∅ )
12 1 11 eqtr3d ( 𝜑 → ( Homf𝐷 ) = ∅ )
13 homf0 ( ( Base ‘ 𝐷 ) = ∅ ↔ ( Homf𝐷 ) = ∅ )
14 12 13 sylibr ( 𝜑 → ( Base ‘ 𝐷 ) = ∅ )
15 14 rabeqdv ( 𝜑 → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = { 𝑎 ∈ ∅ ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } )
16 rab0 { 𝑎 ∈ ∅ ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = ∅
17 15 16 eqtrdi ( 𝜑 → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = ∅ )
18 17 adantr ( ( 𝜑𝐷 ∈ Cat ) → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = ∅ )
19 9 18 eqtrd ( ( 𝜑𝐷 ∈ Cat ) → ( InitO ‘ 𝐷 ) = ∅ )
20 4 3 5 19 initopropdlemlem ( 𝜑 → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) )