| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 2 |
|
initopropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 3 |
|
initopropdlem.1 |
⊢ ( 𝜑 → ¬ 𝐶 ∈ V ) |
| 4 |
|
initofn |
⊢ InitO Fn Cat |
| 5 |
|
ssv |
⊢ Cat ⊆ V |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 9 |
6 7 8
|
initoval |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( InitO ‘ 𝐷 ) = { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } ) |
| 10 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ∅ ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ∅ ) |
| 12 |
1 11
|
eqtr3d |
⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ∅ ) |
| 13 |
|
homf0 |
⊢ ( ( Base ‘ 𝐷 ) = ∅ ↔ ( Homf ‘ 𝐷 ) = ∅ ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ∅ ) |
| 15 |
14
|
rabeqdv |
⊢ ( 𝜑 → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = { 𝑎 ∈ ∅ ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } ) |
| 16 |
|
rab0 |
⊢ { 𝑎 ∈ ∅ ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = ∅ |
| 17 |
15 16
|
eqtrdi |
⊢ ( 𝜑 → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = ∅ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) } = ∅ ) |
| 19 |
9 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( InitO ‘ 𝐷 ) = ∅ ) |
| 20 |
4 3 5 19
|
initopropdlemlem |
⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) ) |