Metamath Proof Explorer


Theorem initopropd

Description: Two structures with the same base, hom-sets and composition operation have the same initial objects. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypotheses initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
initopropd.2 φ comp 𝑓 C = comp 𝑓 D
Assertion initopropd φ InitO C = InitO D

Proof

Step Hyp Ref Expression
1 initopropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 initopropd.2 φ comp 𝑓 C = comp 𝑓 D
3 1 adantr φ ¬ C V Hom 𝑓 C = Hom 𝑓 D
4 2 adantr φ ¬ C V comp 𝑓 C = comp 𝑓 D
5 simpr φ ¬ C V ¬ C V
6 3 4 5 initopropdlem φ ¬ C V InitO C = InitO D
7 1 adantr φ ¬ D V Hom 𝑓 C = Hom 𝑓 D
8 7 eqcomd φ ¬ D V Hom 𝑓 D = Hom 𝑓 C
9 2 adantr φ ¬ D V comp 𝑓 C = comp 𝑓 D
10 9 eqcomd φ ¬ D V comp 𝑓 D = comp 𝑓 C
11 simpr φ ¬ D V ¬ D V
12 8 10 11 initopropdlem φ ¬ D V InitO D = InitO C
13 12 eqcomd φ ¬ D V InitO C = InitO D
14 1 adantr φ C V D V Hom 𝑓 C = Hom 𝑓 D
15 14 adantr φ C V D V C Cat Hom 𝑓 C = Hom 𝑓 D
16 eqid Hom C = Hom C
17 eqid Hom D = Hom D
18 eqidd φ C V D V C Cat Base C = Base C
19 15 homfeqbas φ C V D V C Cat Base C = Base D
20 16 17 18 19 homfeq φ C V D V C Cat Hom 𝑓 C = Hom 𝑓 D a Base C b Base C a Hom C b = a Hom D b
21 15 20 mpbid φ C V D V C Cat a Base C b Base C a Hom C b = a Hom D b
22 21 r19.21bi φ C V D V C Cat a Base C b Base C a Hom C b = a Hom D b
23 22 r19.21bi φ C V D V C Cat a Base C b Base C a Hom C b = a Hom D b
24 23 eleq2d φ C V D V C Cat a Base C b Base C h a Hom C b h a Hom D b
25 24 eubidv φ C V D V C Cat a Base C b Base C ∃! h h a Hom C b ∃! h h a Hom D b
26 25 ralbidva φ C V D V C Cat a Base C b Base C ∃! h h a Hom C b b Base C ∃! h h a Hom D b
27 26 pm5.32da φ C V D V C Cat a Base C b Base C ∃! h h a Hom C b a Base C b Base C ∃! h h a Hom D b
28 19 eleq2d φ C V D V C Cat a Base C a Base D
29 19 raleqdv φ C V D V C Cat b Base C ∃! h h a Hom D b b Base D ∃! h h a Hom D b
30 28 29 anbi12d φ C V D V C Cat a Base C b Base C ∃! h h a Hom D b a Base D b Base D ∃! h h a Hom D b
31 27 30 bitrd φ C V D V C Cat a Base C b Base C ∃! h h a Hom C b a Base D b Base D ∃! h h a Hom D b
32 31 rabbidva2 φ C V D V C Cat a Base C | b Base C ∃! h h a Hom C b = a Base D | b Base D ∃! h h a Hom D b
33 simpr φ C V D V C Cat C Cat
34 eqid Base C = Base C
35 33 34 16 initoval φ C V D V C Cat InitO C = a Base C | b Base C ∃! h h a Hom C b
36 2 adantr φ C V D V comp 𝑓 C = comp 𝑓 D
37 simprl φ C V D V C V
38 simprr φ C V D V D V
39 14 36 37 38 catpropd φ C V D V C Cat D Cat
40 39 biimpa φ C V D V C Cat D Cat
41 eqid Base D = Base D
42 40 41 17 initoval φ C V D V C Cat InitO D = a Base D | b Base D ∃! h h a Hom D b
43 32 35 42 3eqtr4d φ C V D V C Cat InitO C = InitO D
44 39 pm5.32i φ C V D V C Cat φ C V D V D Cat
45 44 43 sylbir φ C V D V D Cat InitO C = InitO D
46 initofn InitO Fn Cat
47 46 fndmi dom InitO = Cat
48 47 eleq2i C dom InitO C Cat
49 ndmfv ¬ C dom InitO InitO C =
50 48 49 sylnbir ¬ C Cat InitO C =
51 50 ad2antrl φ C V D V ¬ C Cat ¬ D Cat InitO C =
52 47 eleq2i D dom InitO D Cat
53 ndmfv ¬ D dom InitO InitO D =
54 52 53 sylnbir ¬ D Cat InitO D =
55 54 ad2antll φ C V D V ¬ C Cat ¬ D Cat InitO D =
56 51 55 eqtr4d φ C V D V ¬ C Cat ¬ D Cat InitO C = InitO D
57 43 45 56 pm2.61ddan φ C V D V InitO C = InitO D
58 6 13 57 pm2.61dda φ InitO C = InitO D