| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
|
| 2 |
|
initopropd.2 |
|
| 3 |
1
|
adantr |
|
| 4 |
2
|
adantr |
|
| 5 |
|
simpr |
|
| 6 |
3 4 5
|
initopropdlem |
|
| 7 |
1
|
adantr |
|
| 8 |
7
|
eqcomd |
|
| 9 |
2
|
adantr |
|
| 10 |
9
|
eqcomd |
|
| 11 |
|
simpr |
|
| 12 |
8 10 11
|
initopropdlem |
|
| 13 |
12
|
eqcomd |
|
| 14 |
1
|
adantr |
|
| 15 |
14
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
eqidd |
|
| 19 |
15
|
homfeqbas |
|
| 20 |
16 17 18 19
|
homfeq |
|
| 21 |
15 20
|
mpbid |
|
| 22 |
21
|
r19.21bi |
|
| 23 |
22
|
r19.21bi |
|
| 24 |
23
|
eleq2d |
|
| 25 |
24
|
eubidv |
|
| 26 |
25
|
ralbidva |
|
| 27 |
26
|
pm5.32da |
|
| 28 |
19
|
eleq2d |
|
| 29 |
19
|
raleqdv |
|
| 30 |
28 29
|
anbi12d |
|
| 31 |
27 30
|
bitrd |
|
| 32 |
31
|
rabbidva2 |
|
| 33 |
|
simpr |
|
| 34 |
|
eqid |
|
| 35 |
33 34 16
|
initoval |
|
| 36 |
2
|
adantr |
|
| 37 |
|
simprl |
|
| 38 |
|
simprr |
|
| 39 |
14 36 37 38
|
catpropd |
|
| 40 |
39
|
biimpa |
|
| 41 |
|
eqid |
|
| 42 |
40 41 17
|
initoval |
|
| 43 |
32 35 42
|
3eqtr4d |
|
| 44 |
39
|
pm5.32i |
|
| 45 |
44 43
|
sylbir |
|
| 46 |
|
initofn |
|
| 47 |
46
|
fndmi |
|
| 48 |
47
|
eleq2i |
|
| 49 |
|
ndmfv |
|
| 50 |
48 49
|
sylnbir |
|
| 51 |
50
|
ad2antrl |
|
| 52 |
47
|
eleq2i |
|
| 53 |
|
ndmfv |
|
| 54 |
52 53
|
sylnbir |
|
| 55 |
54
|
ad2antll |
|
| 56 |
51 55
|
eqtr4d |
|
| 57 |
43 45 56
|
pm2.61ddan |
|
| 58 |
6 13 57
|
pm2.61dda |
|