| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 2 |
|
initopropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ 𝐶 ∈ V ) |
| 6 |
3 4 5
|
termopropdlem |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐶 ) ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐶 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ¬ 𝐷 ∈ V ) |
| 12 |
8 10 11
|
termopropdlem |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( TermO ‘ 𝐷 ) = ( TermO ‘ 𝐶 ) ) |
| 13 |
12
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 16 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 17 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 18 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) |
| 19 |
15
|
homfeqbas |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 20 |
16 17 18 19
|
homfeq |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 21 |
|
ralcom |
⊢ ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 22 |
20 21
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 23 |
15 22
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 24 |
23
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 25 |
24
|
r19.21bi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
| 26 |
25
|
eleq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 27 |
26
|
eubidv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 28 |
27
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 29 |
28
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ) ↔ ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) ) |
| 30 |
19
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( 𝑎 ∈ ( Base ‘ 𝐶 ) ↔ 𝑎 ∈ ( Base ‘ 𝐷 ) ) ) |
| 31 |
19
|
raleqdv |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) |
| 32 |
30 31
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ↔ ( 𝑎 ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) ) |
| 33 |
29 32
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) ) ↔ ( 𝑎 ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) ) ) ) |
| 34 |
33
|
rabbidva2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → { 𝑎 ∈ ( Base ‘ 𝐶 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) } = { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) |
| 36 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 37 |
35 36 16
|
termoval |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐶 ) = { 𝑎 ∈ ( Base ‘ 𝐶 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑎 ) } ) |
| 38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐶 ∈ V ) |
| 40 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐷 ∈ V ) |
| 41 |
14 38 39 40
|
catpropd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 42 |
41
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 43 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 44 |
42 43 17
|
termoval |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐷 ) = { 𝑎 ∈ ( Base ‘ 𝐷 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝐷 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐷 ) 𝑎 ) } ) |
| 45 |
34 37 44
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 46 |
41
|
pm5.32i |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ↔ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) ) |
| 47 |
46 45
|
sylbir |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 48 |
|
termofn |
⊢ TermO Fn Cat |
| 49 |
48
|
fndmi |
⊢ dom TermO = Cat |
| 50 |
49
|
eleq2i |
⊢ ( 𝐶 ∈ dom TermO ↔ 𝐶 ∈ Cat ) |
| 51 |
|
ndmfv |
⊢ ( ¬ 𝐶 ∈ dom TermO → ( TermO ‘ 𝐶 ) = ∅ ) |
| 52 |
50 51
|
sylnbir |
⊢ ( ¬ 𝐶 ∈ Cat → ( TermO ‘ 𝐶 ) = ∅ ) |
| 53 |
52
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( TermO ‘ 𝐶 ) = ∅ ) |
| 54 |
49
|
eleq2i |
⊢ ( 𝐷 ∈ dom TermO ↔ 𝐷 ∈ Cat ) |
| 55 |
|
ndmfv |
⊢ ( ¬ 𝐷 ∈ dom TermO → ( TermO ‘ 𝐷 ) = ∅ ) |
| 56 |
54 55
|
sylnbir |
⊢ ( ¬ 𝐷 ∈ Cat → ( TermO ‘ 𝐷 ) = ∅ ) |
| 57 |
56
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( TermO ‘ 𝐷 ) = ∅ ) |
| 58 |
53 57
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 59 |
45 47 58
|
pm2.61ddan |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 60 |
6 13 59
|
pm2.61dda |
⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |