| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 2 |
|
initopropd.2 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 3 |
1
|
adantr |
|- ( ( ph /\ -. C e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ -. C e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
simpr |
|- ( ( ph /\ -. C e. _V ) -> -. C e. _V ) |
| 6 |
3 4 5
|
termopropdlem |
|- ( ( ph /\ -. C e. _V ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ -. D e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 8 |
7
|
eqcomd |
|- ( ( ph /\ -. D e. _V ) -> ( Homf ` D ) = ( Homf ` C ) ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ -. D e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 10 |
9
|
eqcomd |
|- ( ( ph /\ -. D e. _V ) -> ( comf ` D ) = ( comf ` C ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ -. D e. _V ) -> -. D e. _V ) |
| 12 |
8 10 11
|
termopropdlem |
|- ( ( ph /\ -. D e. _V ) -> ( TermO ` D ) = ( TermO ` C ) ) |
| 13 |
12
|
eqcomd |
|- ( ( ph /\ -. D e. _V ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 15 |
14
|
adantr |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 16 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 17 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 18 |
|
eqidd |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Base ` C ) = ( Base ` C ) ) |
| 19 |
15
|
homfeqbas |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Base ` C ) = ( Base ` D ) ) |
| 20 |
16 17 18 19
|
homfeq |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. b e. ( Base ` C ) A. a e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) ) |
| 21 |
|
ralcom |
|- ( A. b e. ( Base ` C ) A. a e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) <-> A. a e. ( Base ` C ) A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
| 22 |
20 21
|
bitrdi |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. a e. ( Base ` C ) A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) ) |
| 23 |
15 22
|
mpbid |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> A. a e. ( Base ` C ) A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
| 24 |
23
|
r19.21bi |
|- ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) -> A. b e. ( Base ` C ) ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
| 25 |
24
|
r19.21bi |
|- ( ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( b ( Hom ` C ) a ) = ( b ( Hom ` D ) a ) ) |
| 26 |
25
|
eleq2d |
|- ( ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( h e. ( b ( Hom ` C ) a ) <-> h e. ( b ( Hom ` D ) a ) ) ) |
| 27 |
26
|
eubidv |
|- ( ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) /\ b e. ( Base ` C ) ) -> ( E! h h e. ( b ( Hom ` C ) a ) <-> E! h h e. ( b ( Hom ` D ) a ) ) ) |
| 28 |
27
|
ralbidva |
|- ( ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) /\ a e. ( Base ` C ) ) -> ( A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) <-> A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) ) ) |
| 29 |
28
|
pm5.32da |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) ) <-> ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) ) ) ) |
| 30 |
19
|
eleq2d |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( a e. ( Base ` C ) <-> a e. ( Base ` D ) ) ) |
| 31 |
19
|
raleqdv |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) <-> A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) ) ) |
| 32 |
30 31
|
anbi12d |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` D ) a ) ) <-> ( a e. ( Base ` D ) /\ A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) ) ) ) |
| 33 |
29 32
|
bitrd |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( a e. ( Base ` C ) /\ A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) ) <-> ( a e. ( Base ` D ) /\ A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) ) ) ) |
| 34 |
33
|
rabbidva2 |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> { a e. ( Base ` C ) | A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) } = { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } ) |
| 35 |
|
simpr |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> C e. Cat ) |
| 36 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 37 |
35 36 16
|
termoval |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` C ) = { a e. ( Base ` C ) | A. b e. ( Base ` C ) E! h h e. ( b ( Hom ` C ) a ) } ) |
| 38 |
2
|
adantr |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 39 |
|
simprl |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> C e. _V ) |
| 40 |
|
simprr |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> D e. _V ) |
| 41 |
14 38 39 40
|
catpropd |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( C e. Cat <-> D e. Cat ) ) |
| 42 |
41
|
biimpa |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> D e. Cat ) |
| 43 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 44 |
42 43 17
|
termoval |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` D ) = { a e. ( Base ` D ) | A. b e. ( Base ` D ) E! h h e. ( b ( Hom ` D ) a ) } ) |
| 45 |
34 37 44
|
3eqtr4d |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 46 |
41
|
pm5.32i |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) <-> ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) ) |
| 47 |
46 45
|
sylbir |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 48 |
|
termofn |
|- TermO Fn Cat |
| 49 |
48
|
fndmi |
|- dom TermO = Cat |
| 50 |
49
|
eleq2i |
|- ( C e. dom TermO <-> C e. Cat ) |
| 51 |
|
ndmfv |
|- ( -. C e. dom TermO -> ( TermO ` C ) = (/) ) |
| 52 |
50 51
|
sylnbir |
|- ( -. C e. Cat -> ( TermO ` C ) = (/) ) |
| 53 |
52
|
ad2antrl |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( TermO ` C ) = (/) ) |
| 54 |
49
|
eleq2i |
|- ( D e. dom TermO <-> D e. Cat ) |
| 55 |
|
ndmfv |
|- ( -. D e. dom TermO -> ( TermO ` D ) = (/) ) |
| 56 |
54 55
|
sylnbir |
|- ( -. D e. Cat -> ( TermO ` D ) = (/) ) |
| 57 |
56
|
ad2antll |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( TermO ` D ) = (/) ) |
| 58 |
53 57
|
eqtr4d |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 59 |
45 47 58
|
pm2.61ddan |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 60 |
6 13 59
|
pm2.61dda |
|- ( ph -> ( TermO ` C ) = ( TermO ` D ) ) |