| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 2 |
|
initopropd.2 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 3 |
1
|
adantr |
|- ( ( ph /\ -. C e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ -. C e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
simpr |
|- ( ( ph /\ -. C e. _V ) -> -. C e. _V ) |
| 6 |
3 4 5
|
zeroopropdlem |
|- ( ( ph /\ -. C e. _V ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ -. D e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 8 |
7
|
eqcomd |
|- ( ( ph /\ -. D e. _V ) -> ( Homf ` D ) = ( Homf ` C ) ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ -. D e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 10 |
9
|
eqcomd |
|- ( ( ph /\ -. D e. _V ) -> ( comf ` D ) = ( comf ` C ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ -. D e. _V ) -> -. D e. _V ) |
| 12 |
8 10 11
|
zeroopropdlem |
|- ( ( ph /\ -. D e. _V ) -> ( ZeroO ` D ) = ( ZeroO ` C ) ) |
| 13 |
12
|
eqcomd |
|- ( ( ph /\ -. D e. _V ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 14 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 15 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( comf ` C ) = ( comf ` D ) ) |
| 16 |
14 15
|
initopropd |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( InitO ` C ) = ( InitO ` D ) ) |
| 17 |
14 15
|
termopropd |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 18 |
16 17
|
ineq12d |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( InitO ` C ) i^i ( TermO ` C ) ) = ( ( InitO ` D ) i^i ( TermO ` D ) ) ) |
| 19 |
|
simpr |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> C e. Cat ) |
| 20 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 21 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 22 |
19 20 21
|
zerooval |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 23 |
1
|
adantr |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 25 |
|
simprl |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> C e. _V ) |
| 26 |
|
simprr |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> D e. _V ) |
| 27 |
23 24 25 26
|
catpropd |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( C e. Cat <-> D e. Cat ) ) |
| 28 |
27
|
biimpa |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> D e. Cat ) |
| 29 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 30 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 31 |
28 29 30
|
zerooval |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ZeroO ` D ) = ( ( InitO ` D ) i^i ( TermO ` D ) ) ) |
| 32 |
18 22 31
|
3eqtr4d |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 33 |
27
|
pm5.32i |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) <-> ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) ) |
| 34 |
33 32
|
sylbir |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 35 |
|
zeroofn |
|- ZeroO Fn Cat |
| 36 |
35
|
fndmi |
|- dom ZeroO = Cat |
| 37 |
36
|
eleq2i |
|- ( C e. dom ZeroO <-> C e. Cat ) |
| 38 |
|
ndmfv |
|- ( -. C e. dom ZeroO -> ( ZeroO ` C ) = (/) ) |
| 39 |
37 38
|
sylnbir |
|- ( -. C e. Cat -> ( ZeroO ` C ) = (/) ) |
| 40 |
39
|
ad2antrl |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( ZeroO ` C ) = (/) ) |
| 41 |
36
|
eleq2i |
|- ( D e. dom ZeroO <-> D e. Cat ) |
| 42 |
|
ndmfv |
|- ( -. D e. dom ZeroO -> ( ZeroO ` D ) = (/) ) |
| 43 |
41 42
|
sylnbir |
|- ( -. D e. Cat -> ( ZeroO ` D ) = (/) ) |
| 44 |
43
|
ad2antll |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( ZeroO ` D ) = (/) ) |
| 45 |
40 44
|
eqtr4d |
|- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 46 |
32 34 45
|
pm2.61ddan |
|- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 47 |
6 13 46
|
pm2.61dda |
|- ( ph -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |