| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initoval.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
initoval.b |
|- B = ( Base ` C ) |
| 3 |
|
initoval.h |
|- H = ( Hom ` C ) |
| 4 |
|
df-zeroo |
|- ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) ) |
| 5 |
|
fveq2 |
|- ( c = C -> ( InitO ` c ) = ( InitO ` C ) ) |
| 6 |
|
fveq2 |
|- ( c = C -> ( TermO ` c ) = ( TermO ` C ) ) |
| 7 |
5 6
|
ineq12d |
|- ( c = C -> ( ( InitO ` c ) i^i ( TermO ` c ) ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 8 |
|
fvex |
|- ( InitO ` C ) e. _V |
| 9 |
8
|
inex1 |
|- ( ( InitO ` C ) i^i ( TermO ` C ) ) e. _V |
| 10 |
9
|
a1i |
|- ( ph -> ( ( InitO ` C ) i^i ( TermO ` C ) ) e. _V ) |
| 11 |
4 7 1 10
|
fvmptd3 |
|- ( ph -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |