Step |
Hyp |
Ref |
Expression |
1 |
|
initoval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
initoval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
initoval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
df-zeroo |
⊢ ZeroO = ( 𝑐 ∈ Cat ↦ ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( InitO ‘ 𝑐 ) = ( InitO ‘ 𝐶 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( TermO ‘ 𝑐 ) = ( TermO ‘ 𝐶 ) ) |
7 |
5 6
|
ineq12d |
⊢ ( 𝑐 = 𝐶 → ( ( InitO ‘ 𝑐 ) ∩ ( TermO ‘ 𝑐 ) ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
8 |
|
fvex |
⊢ ( InitO ‘ 𝐶 ) ∈ V |
9 |
8
|
inex1 |
⊢ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ∈ V ) |
11 |
4 7 1 10
|
fvmptd3 |
⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |