| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initopropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 2 |
|
initopropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ 𝐶 ∈ V ) |
| 6 |
3 4 5
|
zeroopropdlem |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐶 ) ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐶 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ¬ 𝐷 ∈ V ) |
| 12 |
8 10 11
|
zeroopropdlem |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( ZeroO ‘ 𝐷 ) = ( ZeroO ‘ 𝐶 ) ) |
| 13 |
12
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ V ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 14 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 15 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 16 |
14 15
|
initopropd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) ) |
| 17 |
14 15
|
termopropd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 18 |
16 17
|
ineq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) = ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 21 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 22 |
19 20 21
|
zerooval |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| 23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐶 ∈ V ) |
| 26 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → 𝐷 ∈ V ) |
| 27 |
23 24 25 26
|
catpropd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 28 |
27
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 30 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 31 |
28 29 30
|
zerooval |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) ) |
| 32 |
18 22 31
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 33 |
27
|
pm5.32i |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐶 ∈ Cat ) ↔ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) ) |
| 34 |
33 32
|
sylbir |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ 𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 35 |
|
zeroofn |
⊢ ZeroO Fn Cat |
| 36 |
35
|
fndmi |
⊢ dom ZeroO = Cat |
| 37 |
36
|
eleq2i |
⊢ ( 𝐶 ∈ dom ZeroO ↔ 𝐶 ∈ Cat ) |
| 38 |
|
ndmfv |
⊢ ( ¬ 𝐶 ∈ dom ZeroO → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 39 |
37 38
|
sylnbir |
⊢ ( ¬ 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 40 |
39
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 41 |
36
|
eleq2i |
⊢ ( 𝐷 ∈ dom ZeroO ↔ 𝐷 ∈ Cat ) |
| 42 |
|
ndmfv |
⊢ ( ¬ 𝐷 ∈ dom ZeroO → ( ZeroO ‘ 𝐷 ) = ∅ ) |
| 43 |
41 42
|
sylnbir |
⊢ ( ¬ 𝐷 ∈ Cat → ( ZeroO ‘ 𝐷 ) = ∅ ) |
| 44 |
43
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( ZeroO ‘ 𝐷 ) = ∅ ) |
| 45 |
40 44
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ∧ ( ¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat ) ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 46 |
32 34 45
|
pm2.61ddan |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| 47 |
6 13 46
|
pm2.61dda |
⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |