| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termorcl |
|- ( I e. ( TermO ` C ) -> C e. Cat ) |
| 2 |
|
initorcl |
|- ( I e. ( InitO ` ( oppCat ` C ) ) -> ( oppCat ` C ) e. Cat ) |
| 3 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
3 4
|
oppcbas |
|- ( Base ` C ) = ( Base ` ( oppCat ` C ) ) |
| 6 |
5
|
initoo2 |
|- ( I e. ( InitO ` ( oppCat ` C ) ) -> I e. ( Base ` C ) ) |
| 7 |
|
elfvex |
|- ( I e. ( Base ` C ) -> C e. _V ) |
| 8 |
|
id |
|- ( C e. _V -> C e. _V ) |
| 9 |
3 8
|
oppccatb |
|- ( C e. _V -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 10 |
6 7 9
|
3syl |
|- ( I e. ( InitO ` ( oppCat ` C ) ) -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 11 |
2 10
|
mpbird |
|- ( I e. ( InitO ` ( oppCat ` C ) ) -> C e. Cat ) |
| 12 |
|
2fveq3 |
|- ( c = C -> ( InitO ` ( oppCat ` c ) ) = ( InitO ` ( oppCat ` C ) ) ) |
| 13 |
|
dftermo2 |
|- TermO = ( c e. Cat |-> ( InitO ` ( oppCat ` c ) ) ) |
| 14 |
|
fvex |
|- ( InitO ` ( oppCat ` C ) ) e. _V |
| 15 |
12 13 14
|
fvmpt |
|- ( C e. Cat -> ( TermO ` C ) = ( InitO ` ( oppCat ` C ) ) ) |
| 16 |
15
|
eleq2d |
|- ( C e. Cat -> ( I e. ( TermO ` C ) <-> I e. ( InitO ` ( oppCat ` C ) ) ) ) |
| 17 |
1 11 16
|
pm5.21nii |
|- ( I e. ( TermO ` C ) <-> I e. ( InitO ` ( oppCat ` C ) ) ) |