| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zeroorcl |
|- ( I e. ( ZeroO ` C ) -> C e. Cat ) |
| 2 |
|
zeroorcl |
|- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> ( oppCat ` C ) e. Cat ) |
| 3 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
3 4
|
oppcbas |
|- ( Base ` C ) = ( Base ` ( oppCat ` C ) ) |
| 6 |
5
|
zeroo2 |
|- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> I e. ( Base ` C ) ) |
| 7 |
|
elfvex |
|- ( I e. ( Base ` C ) -> C e. _V ) |
| 8 |
|
id |
|- ( C e. _V -> C e. _V ) |
| 9 |
3 8
|
oppccatb |
|- ( C e. _V -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 10 |
6 7 9
|
3syl |
|- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> ( C e. Cat <-> ( oppCat ` C ) e. Cat ) ) |
| 11 |
2 10
|
mpbird |
|- ( I e. ( ZeroO ` ( oppCat ` C ) ) -> C e. Cat ) |
| 12 |
|
oppcinito |
|- ( c e. ( InitO ` C ) <-> c e. ( TermO ` ( oppCat ` C ) ) ) |
| 13 |
12
|
eqriv |
|- ( InitO ` C ) = ( TermO ` ( oppCat ` C ) ) |
| 14 |
|
oppctermo |
|- ( c e. ( TermO ` C ) <-> c e. ( InitO ` ( oppCat ` C ) ) ) |
| 15 |
14
|
eqriv |
|- ( TermO ` C ) = ( InitO ` ( oppCat ` C ) ) |
| 16 |
13 15
|
ineq12i |
|- ( ( InitO ` C ) i^i ( TermO ` C ) ) = ( ( TermO ` ( oppCat ` C ) ) i^i ( InitO ` ( oppCat ` C ) ) ) |
| 17 |
|
incom |
|- ( ( TermO ` ( oppCat ` C ) ) i^i ( InitO ` ( oppCat ` C ) ) ) = ( ( InitO ` ( oppCat ` C ) ) i^i ( TermO ` ( oppCat ` C ) ) ) |
| 18 |
16 17
|
eqtri |
|- ( ( InitO ` C ) i^i ( TermO ` C ) ) = ( ( InitO ` ( oppCat ` C ) ) i^i ( TermO ` ( oppCat ` C ) ) ) |
| 19 |
|
id |
|- ( C e. Cat -> C e. Cat ) |
| 20 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 21 |
19 4 20
|
zerooval |
|- ( C e. Cat -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 22 |
3
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 23 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
| 24 |
22 5 23
|
zerooval |
|- ( C e. Cat -> ( ZeroO ` ( oppCat ` C ) ) = ( ( InitO ` ( oppCat ` C ) ) i^i ( TermO ` ( oppCat ` C ) ) ) ) |
| 25 |
18 21 24
|
3eqtr4a |
|- ( C e. Cat -> ( ZeroO ` C ) = ( ZeroO ` ( oppCat ` C ) ) ) |
| 26 |
25
|
eleq2d |
|- ( C e. Cat -> ( I e. ( ZeroO ` C ) <-> I e. ( ZeroO ` ( oppCat ` C ) ) ) ) |
| 27 |
1 11 26
|
pm5.21nii |
|- ( I e. ( ZeroO ` C ) <-> I e. ( ZeroO ` ( oppCat ` C ) ) ) |