Description: A zero object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | initoo2.b | |- B = ( Base ` C ) |
|
| Assertion | zeroo2 | |- ( O e. ( ZeroO ` C ) -> O e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoo2.b | |- B = ( Base ` C ) |
|
| 2 | zeroorcl | |- ( O e. ( ZeroO ` C ) -> C e. Cat ) |
|
| 3 | iszeroi | |- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) /\ ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
|
| 4 | 3 | simpld | |- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> O e. ( Base ` C ) ) |
| 5 | 2 4 | mpancom | |- ( O e. ( ZeroO ` C ) -> O e. ( Base ` C ) ) |
| 6 | 5 1 | eleqtrrdi | |- ( O e. ( ZeroO ` C ) -> O e. B ) |