Metamath Proof Explorer


Theorem zeroo2

Description: A zero object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypothesis initoo2.b
|- B = ( Base ` C )
Assertion zeroo2
|- ( O e. ( ZeroO ` C ) -> O e. B )

Proof

Step Hyp Ref Expression
1 initoo2.b
 |-  B = ( Base ` C )
2 zeroorcl
 |-  ( O e. ( ZeroO ` C ) -> C e. Cat )
3 iszeroi
 |-  ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) /\ ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) )
4 3 simpld
 |-  ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> O e. ( Base ` C ) )
5 2 4 mpancom
 |-  ( O e. ( ZeroO ` C ) -> O e. ( Base ` C ) )
6 5 1 eleqtrrdi
 |-  ( O e. ( ZeroO ` C ) -> O e. B )