| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( C e. Cat -> C e. Cat ) |
| 2 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 3 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 4 |
1 2 3
|
zerooval |
|- ( C e. Cat -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 5 |
4
|
eleq2d |
|- ( C e. Cat -> ( O e. ( ZeroO ` C ) <-> O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) ) ) |
| 6 |
|
elin |
|- ( O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) <-> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) |
| 7 |
|
initoo |
|- ( C e. Cat -> ( O e. ( InitO ` C ) -> O e. ( Base ` C ) ) ) |
| 8 |
7
|
adantrd |
|- ( C e. Cat -> ( ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) -> O e. ( Base ` C ) ) ) |
| 9 |
6 8
|
biimtrid |
|- ( C e. Cat -> ( O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) -> O e. ( Base ` C ) ) ) |
| 10 |
5 9
|
sylbid |
|- ( C e. Cat -> ( O e. ( ZeroO ` C ) -> O e. ( Base ` C ) ) ) |
| 11 |
10
|
imp |
|- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> O e. ( Base ` C ) ) |
| 12 |
|
simpl |
|- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> C e. Cat ) |
| 13 |
|
simpr |
|- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> O e. ( Base ` C ) ) |
| 14 |
2 3 12 13
|
iszeroo |
|- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> ( O e. ( ZeroO ` C ) <-> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
| 15 |
14
|
biimpd |
|- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> ( O e. ( ZeroO ` C ) -> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
| 16 |
15
|
impancom |
|- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) -> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
| 17 |
11 16
|
jcai |
|- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) /\ ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |