Metamath Proof Explorer


Theorem iszeroi

Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020)

Ref Expression
Assertion iszeroi C Cat O ZeroO C O Base C O InitO C O TermO C

Proof

Step Hyp Ref Expression
1 id C Cat C Cat
2 eqid Base C = Base C
3 eqid Hom C = Hom C
4 1 2 3 zerooval C Cat ZeroO C = InitO C TermO C
5 4 eleq2d C Cat O ZeroO C O InitO C TermO C
6 elin O InitO C TermO C O InitO C O TermO C
7 initoo C Cat O InitO C O Base C
8 7 adantrd C Cat O InitO C O TermO C O Base C
9 6 8 syl5bi C Cat O InitO C TermO C O Base C
10 5 9 sylbid C Cat O ZeroO C O Base C
11 10 imp C Cat O ZeroO C O Base C
12 simpl C Cat O Base C C Cat
13 simpr C Cat O Base C O Base C
14 2 3 12 13 iszeroo C Cat O Base C O ZeroO C O InitO C O TermO C
15 14 biimpd C Cat O Base C O ZeroO C O InitO C O TermO C
16 15 impancom C Cat O ZeroO C O Base C O InitO C O TermO C
17 11 16 jcai C Cat O ZeroO C O Base C O InitO C O TermO C