Database
BASIC CATEGORY THEORY
Categories
Initial, terminal and zero objects of a category
iszeroi
Next ⟩
2initoinv
Metamath Proof Explorer
Ascii
Unicode
Theorem
iszeroi
Description:
Implication of a class being a zero object.
(Contributed by
AV
, 18-Apr-2020)
Ref
Expression
Assertion
iszeroi
⊢
C
∈
Cat
∧
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
∧
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C
Proof
Step
Hyp
Ref
Expression
1
id
⊢
C
∈
Cat
→
C
∈
Cat
2
eqid
⊢
Base
C
=
Base
C
3
eqid
⊢
Hom
⁡
C
=
Hom
⁡
C
4
1
2
3
zerooval
⊢
C
∈
Cat
→
ZeroO
⁡
C
=
InitO
⁡
C
∩
TermO
⁡
C
5
4
eleq2d
⊢
C
∈
Cat
→
O
∈
ZeroO
⁡
C
↔
O
∈
InitO
⁡
C
∩
TermO
⁡
C
6
elin
⊢
O
∈
InitO
⁡
C
∩
TermO
⁡
C
↔
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C
7
initoo
⊢
C
∈
Cat
→
O
∈
InitO
⁡
C
→
O
∈
Base
C
8
7
adantrd
⊢
C
∈
Cat
→
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C
→
O
∈
Base
C
9
6
8
syl5bi
⊢
C
∈
Cat
→
O
∈
InitO
⁡
C
∩
TermO
⁡
C
→
O
∈
Base
C
10
5
9
sylbid
⊢
C
∈
Cat
→
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
11
10
imp
⊢
C
∈
Cat
∧
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
12
simpl
⊢
C
∈
Cat
∧
O
∈
Base
C
→
C
∈
Cat
13
simpr
⊢
C
∈
Cat
∧
O
∈
Base
C
→
O
∈
Base
C
14
2
3
12
13
iszeroo
⊢
C
∈
Cat
∧
O
∈
Base
C
→
O
∈
ZeroO
⁡
C
↔
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C
15
14
biimpd
⊢
C
∈
Cat
∧
O
∈
Base
C
→
O
∈
ZeroO
⁡
C
→
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C
16
15
impancom
⊢
C
∈
Cat
∧
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
→
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C
17
11
16
jcai
⊢
C
∈
Cat
∧
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
∧
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C