Database
BASIC CATEGORY THEORY
Categories
Initial, terminal and zero objects of a category
iszeroo
Next ⟩
isinitoi
Metamath Proof Explorer
Ascii
Unicode
Theorem
iszeroo
Description:
The predicate "is a zero object" of a category.
(Contributed by
AV
, 3-Apr-2020)
Ref
Expression
Hypotheses
isinito.b
⊢
B
=
Base
C
isinito.h
⊢
H
=
Hom
⁡
C
isinito.c
⊢
φ
→
C
∈
Cat
isinito.i
⊢
φ
→
I
∈
B
Assertion
iszeroo
⊢
φ
→
I
∈
ZeroO
⁡
C
↔
I
∈
InitO
⁡
C
∧
I
∈
TermO
⁡
C
Proof
Step
Hyp
Ref
Expression
1
isinito.b
⊢
B
=
Base
C
2
isinito.h
⊢
H
=
Hom
⁡
C
3
isinito.c
⊢
φ
→
C
∈
Cat
4
isinito.i
⊢
φ
→
I
∈
B
5
3
1
2
zerooval
⊢
φ
→
ZeroO
⁡
C
=
InitO
⁡
C
∩
TermO
⁡
C
6
5
eleq2d
⊢
φ
→
I
∈
ZeroO
⁡
C
↔
I
∈
InitO
⁡
C
∩
TermO
⁡
C
7
elin
⊢
I
∈
InitO
⁡
C
∩
TermO
⁡
C
↔
I
∈
InitO
⁡
C
∧
I
∈
TermO
⁡
C
8
6
7
bitrdi
⊢
φ
→
I
∈
ZeroO
⁡
C
↔
I
∈
InitO
⁡
C
∧
I
∈
TermO
⁡
C