Metamath Proof Explorer


Theorem iszeroo

Description: The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses isinito.b B=BaseC
isinito.h H=HomC
isinito.c φCCat
isinito.i φIB
Assertion iszeroo φIZeroOCIInitOCITermOC

Proof

Step Hyp Ref Expression
1 isinito.b B=BaseC
2 isinito.h H=HomC
3 isinito.c φCCat
4 isinito.i φIB
5 3 1 2 zerooval φZeroOC=InitOCTermOC
6 5 eleq2d φIZeroOCIInitOCTermOC
7 elin IInitOCTermOCIInitOCITermOC
8 6 7 bitrdi φIZeroOCIInitOCITermOC