Metamath Proof Explorer


Theorem 2initoinv

Description: Morphisms between two initial objects are inverses. (Contributed by AV, 14-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φCCat
initoeu1.a φAInitOC
initoeu1.b φBInitOC
Assertion 2initoinv φGBHomCAFAHomCBFAInvCBG

Proof

Step Hyp Ref Expression
1 initoeu1.c φCCat
2 initoeu1.a φAInitOC
3 initoeu1.b φBInitOC
4 eqid BaseC=BaseC
5 eqid HomC=HomC
6 eqid compC=compC
7 1 3ad2ant1 φGBHomCAFAHomCBCCat
8 initoo CCatAInitOCABaseC
9 1 2 8 sylc φABaseC
10 9 3ad2ant1 φGBHomCAFAHomCBABaseC
11 initoo CCatBInitOCBBaseC
12 1 3 11 sylc φBBaseC
13 12 3ad2ant1 φGBHomCAFAHomCBBBaseC
14 simp3 φGBHomCAFAHomCBFAHomCB
15 simp2 φGBHomCAFAHomCBGBHomCA
16 4 5 6 7 10 13 10 14 15 catcocl φGBHomCAFAHomCBGABcompCAFAHomCA
17 4 5 1 initoid φAInitOCAHomCA=IdCA
18 2 17 mpdan φAHomCA=IdCA
19 18 3ad2ant1 φGBHomCAFAHomCBAHomCA=IdCA
20 19 eleq2d φGBHomCAFAHomCBGABcompCAFAHomCAGABcompCAFIdCA
21 elsni GABcompCAFIdCAGABcompCAF=IdCA
22 20 21 syl6bi φGBHomCAFAHomCBGABcompCAFAHomCAGABcompCAF=IdCA
23 16 22 mpd φGBHomCAFAHomCBGABcompCAF=IdCA
24 eqid IdC=IdC
25 eqid SectC=SectC
26 4 5 6 24 25 7 10 13 14 15 issect2 φGBHomCAFAHomCBFASectCBGGABcompCAF=IdCA
27 23 26 mpbird φGBHomCAFAHomCBFASectCBG
28 4 5 6 7 13 10 13 15 14 catcocl φGBHomCAFAHomCBFBAcompCBGBHomCB
29 4 5 1 initoid φBInitOCBHomCB=IdCB
30 3 29 mpdan φBHomCB=IdCB
31 30 3ad2ant1 φGBHomCAFAHomCBBHomCB=IdCB
32 31 eleq2d φGBHomCAFAHomCBFBAcompCBGBHomCBFBAcompCBGIdCB
33 elsni FBAcompCBGIdCBFBAcompCBG=IdCB
34 32 33 syl6bi φGBHomCAFAHomCBFBAcompCBGBHomCBFBAcompCBG=IdCB
35 28 34 mpd φGBHomCAFAHomCBFBAcompCBG=IdCB
36 4 5 6 24 25 7 13 10 15 14 issect2 φGBHomCAFAHomCBGBSectCAFFBAcompCBG=IdCB
37 35 36 mpbird φGBHomCAFAHomCBGBSectCAF
38 eqid InvC=InvC
39 4 38 1 9 12 25 isinv φFAInvCBGFASectCBGGBSectCAF
40 39 3ad2ant1 φGBHomCAFAHomCBFAInvCBGFASectCBGGBSectCAF
41 27 37 40 mpbir2and φGBHomCAFAHomCBFAInvCBG