Metamath Proof Explorer


Theorem 2initoinv

Description: Morphisms between two initial objects are inverses. (Contributed by AV, 14-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φ C Cat
initoeu1.a φ A InitO C
initoeu1.b φ B InitO C
Assertion 2initoinv φ G B Hom C A F A Hom C B F A Inv C B G

Proof

Step Hyp Ref Expression
1 initoeu1.c φ C Cat
2 initoeu1.a φ A InitO C
3 initoeu1.b φ B InitO C
4 eqid Base C = Base C
5 eqid Hom C = Hom C
6 eqid comp C = comp C
7 1 3ad2ant1 φ G B Hom C A F A Hom C B C Cat
8 initoo C Cat A InitO C A Base C
9 1 2 8 sylc φ A Base C
10 9 3ad2ant1 φ G B Hom C A F A Hom C B A Base C
11 initoo C Cat B InitO C B Base C
12 1 3 11 sylc φ B Base C
13 12 3ad2ant1 φ G B Hom C A F A Hom C B B Base C
14 simp3 φ G B Hom C A F A Hom C B F A Hom C B
15 simp2 φ G B Hom C A F A Hom C B G B Hom C A
16 4 5 6 7 10 13 10 14 15 catcocl φ G B Hom C A F A Hom C B G A B comp C A F A Hom C A
17 4 5 1 initoid φ A InitO C A Hom C A = Id C A
18 2 17 mpdan φ A Hom C A = Id C A
19 18 3ad2ant1 φ G B Hom C A F A Hom C B A Hom C A = Id C A
20 19 eleq2d φ G B Hom C A F A Hom C B G A B comp C A F A Hom C A G A B comp C A F Id C A
21 elsni G A B comp C A F Id C A G A B comp C A F = Id C A
22 20 21 syl6bi φ G B Hom C A F A Hom C B G A B comp C A F A Hom C A G A B comp C A F = Id C A
23 16 22 mpd φ G B Hom C A F A Hom C B G A B comp C A F = Id C A
24 eqid Id C = Id C
25 eqid Sect C = Sect C
26 4 5 6 24 25 7 10 13 14 15 issect2 φ G B Hom C A F A Hom C B F A Sect C B G G A B comp C A F = Id C A
27 23 26 mpbird φ G B Hom C A F A Hom C B F A Sect C B G
28 4 5 6 7 13 10 13 15 14 catcocl φ G B Hom C A F A Hom C B F B A comp C B G B Hom C B
29 4 5 1 initoid φ B InitO C B Hom C B = Id C B
30 3 29 mpdan φ B Hom C B = Id C B
31 30 3ad2ant1 φ G B Hom C A F A Hom C B B Hom C B = Id C B
32 31 eleq2d φ G B Hom C A F A Hom C B F B A comp C B G B Hom C B F B A comp C B G Id C B
33 elsni F B A comp C B G Id C B F B A comp C B G = Id C B
34 32 33 syl6bi φ G B Hom C A F A Hom C B F B A comp C B G B Hom C B F B A comp C B G = Id C B
35 28 34 mpd φ G B Hom C A F A Hom C B F B A comp C B G = Id C B
36 4 5 6 24 25 7 13 10 15 14 issect2 φ G B Hom C A F A Hom C B G B Sect C A F F B A comp C B G = Id C B
37 35 36 mpbird φ G B Hom C A F A Hom C B G B Sect C A F
38 eqid Inv C = Inv C
39 4 38 1 9 12 25 isinv φ F A Inv C B G F A Sect C B G G B Sect C A F
40 39 3ad2ant1 φ G B Hom C A F A Hom C B F A Inv C B G F A Sect C B G G B Sect C A F
41 27 37 40 mpbir2and φ G B Hom C A F A Hom C B F A Inv C B G