Metamath Proof Explorer


Theorem initoid

Description: For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020)

Ref Expression
Hypotheses isinitoi.b B=BaseC
isinitoi.h H=HomC
isinitoi.c φCCat
Assertion initoid φOInitOCOHO=IdCO

Proof

Step Hyp Ref Expression
1 isinitoi.b B=BaseC
2 isinitoi.h H=HomC
3 isinitoi.c φCCat
4 1 2 3 isinitoi φOInitOCOBoB∃!hhOHo
5 oveq2 o=OOHo=OHO
6 5 eleq2d o=OhOHohOHO
7 6 eubidv o=O∃!hhOHo∃!hhOHO
8 7 rspcv OBoB∃!hhOHo∃!hhOHO
9 8 adantl φOInitOCOBoB∃!hhOHo∃!hhOHO
10 eusn ∃!hhOHOhOHO=h
11 eqid IdC=IdC
12 3 ad2antrr φOInitOCOBCCat
13 simpr φOInitOCOBOB
14 1 2 11 12 13 catidcl φOInitOCOBIdCOOHO
15 fvex IdCOV
16 15 elsn IdCOhIdCO=h
17 eqcom IdCO=hh=IdCO
18 sneqbg hVh=IdCOh=IdCO
19 18 bicomd hVh=IdCOh=IdCO
20 19 elv h=IdCOh=IdCO
21 16 17 20 3bitri IdCOhh=IdCO
22 21 biimpi IdCOhh=IdCO
23 22 a1i OHO=hIdCOhh=IdCO
24 eleq2 OHO=hIdCOOHOIdCOh
25 eqeq1 OHO=hOHO=IdCOh=IdCO
26 23 24 25 3imtr4d OHO=hIdCOOHOOHO=IdCO
27 14 26 syl5 OHO=hφOInitOCOBOHO=IdCO
28 27 exlimiv hOHO=hφOInitOCOBOHO=IdCO
29 28 com12 φOInitOCOBhOHO=hOHO=IdCO
30 10 29 biimtrid φOInitOCOB∃!hhOHOOHO=IdCO
31 9 30 syld φOInitOCOBoB∃!hhOHoOHO=IdCO
32 31 expimpd φOInitOCOBoB∃!hhOHoOHO=IdCO
33 4 32 mpd φOInitOCOHO=IdCO