Metamath Proof Explorer


Theorem initoeu1

Description: Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in Lang p. 58 ("... if P, P' are two universal objects [... then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φ C Cat
initoeu1.a φ A InitO C
initoeu1.b φ B InitO C
Assertion initoeu1 φ ∃! f f A Iso C B

Proof

Step Hyp Ref Expression
1 initoeu1.c φ C Cat
2 initoeu1.a φ A InitO C
3 initoeu1.b φ B InitO C
4 eqid Base C = Base C
5 eqid Hom C = Hom C
6 4 5 1 isinitoi φ A InitO C A Base C b Base C ∃! f f A Hom C b
7 2 6 mpdan φ A Base C b Base C ∃! f f A Hom C b
8 4 5 1 isinitoi φ B InitO C B Base C a Base C ∃! g g B Hom C a
9 3 8 mpdan φ B Base C a Base C ∃! g g B Hom C a
10 oveq2 b = B A Hom C b = A Hom C B
11 10 eleq2d b = B f A Hom C b f A Hom C B
12 11 eubidv b = B ∃! f f A Hom C b ∃! f f A Hom C B
13 12 rspcv B Base C b Base C ∃! f f A Hom C b ∃! f f A Hom C B
14 eqid Iso C = Iso C
15 1 adantr φ B Base C A Base C C Cat
16 simprr φ B Base C A Base C A Base C
17 simprl φ B Base C A Base C B Base C
18 4 5 14 15 16 17 isohom φ B Base C A Base C A Iso C B A Hom C B
19 18 adantr φ B Base C A Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a A Iso C B A Hom C B
20 euex ∃! f f A Hom C B f f A Hom C B
21 20 a1i φ B Base C A Base C ∃! f f A Hom C B f f A Hom C B
22 oveq2 a = A B Hom C a = B Hom C A
23 22 eleq2d a = A g B Hom C a g B Hom C A
24 23 eubidv a = A ∃! g g B Hom C a ∃! g g B Hom C A
25 24 rspcva A Base C a Base C ∃! g g B Hom C a ∃! g g B Hom C A
26 euex ∃! g g B Hom C A g g B Hom C A
27 25 26 syl A Base C a Base C ∃! g g B Hom C a g g B Hom C A
28 27 ex A Base C a Base C ∃! g g B Hom C a g g B Hom C A
29 28 ad2antll φ B Base C A Base C a Base C ∃! g g B Hom C a g g B Hom C A
30 eqid Inv C = Inv C
31 15 ad2antrr φ B Base C A Base C g B Hom C A f A Hom C B C Cat
32 16 ad2antrr φ B Base C A Base C g B Hom C A f A Hom C B A Base C
33 17 ad2antrr φ B Base C A Base C g B Hom C A f A Hom C B B Base C
34 1 2 3 2initoinv φ g B Hom C A f A Hom C B f A Inv C B g
35 34 ad4ant134 φ B Base C A Base C g B Hom C A f A Hom C B f A Inv C B g
36 4 30 31 32 33 14 35 inviso1 φ B Base C A Base C g B Hom C A f A Hom C B f A Iso C B
37 36 ex φ B Base C A Base C g B Hom C A f A Hom C B f A Iso C B
38 37 eximdv φ B Base C A Base C g B Hom C A f f A Hom C B f f A Iso C B
39 38 expcom g B Hom C A φ B Base C A Base C f f A Hom C B f f A Iso C B
40 39 exlimiv g g B Hom C A φ B Base C A Base C f f A Hom C B f f A Iso C B
41 40 com3l φ B Base C A Base C f f A Hom C B g g B Hom C A f f A Iso C B
42 41 impd φ B Base C A Base C f f A Hom C B g g B Hom C A f f A Iso C B
43 21 29 42 syl2and φ B Base C A Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a f f A Iso C B
44 43 imp φ B Base C A Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a f f A Iso C B
45 simprl φ B Base C A Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a ∃! f f A Hom C B
46 euelss A Iso C B A Hom C B f f A Iso C B ∃! f f A Hom C B ∃! f f A Iso C B
47 19 44 45 46 syl3anc φ B Base C A Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a ∃! f f A Iso C B
48 47 exp42 φ B Base C A Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a ∃! f f A Iso C B
49 48 com24 φ ∃! f f A Hom C B a Base C ∃! g g B Hom C a A Base C B Base C ∃! f f A Iso C B
50 49 com14 B Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a A Base C φ ∃! f f A Iso C B
51 50 expd B Base C ∃! f f A Hom C B a Base C ∃! g g B Hom C a A Base C φ ∃! f f A Iso C B
52 13 51 syldc b Base C ∃! f f A Hom C b B Base C a Base C ∃! g g B Hom C a A Base C φ ∃! f f A Iso C B
53 52 com15 φ B Base C a Base C ∃! g g B Hom C a A Base C b Base C ∃! f f A Hom C b ∃! f f A Iso C B
54 53 impd φ B Base C a Base C ∃! g g B Hom C a A Base C b Base C ∃! f f A Hom C b ∃! f f A Iso C B
55 9 54 mpd φ A Base C b Base C ∃! f f A Hom C b ∃! f f A Iso C B
56 55 impd φ A Base C b Base C ∃! f f A Hom C b ∃! f f A Iso C B
57 7 56 mpd φ ∃! f f A Iso C B