Step |
Hyp |
Ref |
Expression |
1 |
|
initoeu1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
initoeu1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) |
3 |
|
initoeu1.b |
⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
5 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
6 |
4 5 1
|
isinitoi |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
7 |
2 6
|
mpdan |
⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
8 |
4 5 1
|
isinitoi |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
9 |
3 8
|
mpdan |
⊢ ( 𝜑 → ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) = ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
11 |
10
|
eleq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
12 |
11
|
eubidv |
⊢ ( 𝑏 = 𝐵 → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
13 |
12
|
rspcv |
⊢ ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
14 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
18 |
4 5 14 15 16 17
|
isohom |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ⊆ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ⊆ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
20 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
23 |
22
|
eleq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
24 |
23
|
eubidv |
⊢ ( 𝑎 = 𝐴 → ( ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
25 |
24
|
rspcva |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
26 |
|
euex |
⊢ ( ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
28 |
27
|
ex |
⊢ ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
29 |
28
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
30 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
31 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐶 ∈ Cat ) |
32 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
33 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
34 |
1 2 3
|
2initoinv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝑓 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝑔 ) |
35 |
34
|
ad4ant134 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝑓 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝑔 ) |
36 |
4 30 31 32 33 14 35
|
inviso1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
37 |
36
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
38 |
37
|
eximdv |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
39 |
38
|
expcom |
⊢ ( 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
40 |
39
|
exlimiv |
⊢ ( ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
41 |
40
|
com3l |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ( ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
42 |
41
|
impd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
43 |
21 29 42
|
syl2and |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
44 |
43
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
45 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
46 |
|
euelss |
⊢ ( ( ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ⊆ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ∧ ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
47 |
19 44 45 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
48 |
47
|
exp42 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
49 |
48
|
com24 |
⊢ ( 𝜑 → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
50 |
49
|
com14 |
⊢ ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
51 |
50
|
expd |
⊢ ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) |
52 |
13 51
|
syldc |
⊢ ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) |
53 |
52
|
com15 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) |
54 |
53
|
impd |
⊢ ( 𝜑 → ( ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
55 |
9 54
|
mpd |
⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
56 |
55
|
impd |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
57 |
7 56
|
mpd |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |