Metamath Proof Explorer


Theorem initoeu1w

Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of Adamek p. 102. (Contributed by AV, 6-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φCCat
initoeu1.a φAInitOC
initoeu1.b φBInitOC
Assertion initoeu1w φA𝑐CB

Proof

Step Hyp Ref Expression
1 initoeu1.c φCCat
2 initoeu1.a φAInitOC
3 initoeu1.b φBInitOC
4 1 2 3 initoeu1 φ∃!ffAIsoCB
5 euex ∃!ffAIsoCBffAIsoCB
6 4 5 syl φffAIsoCB
7 eqid IsoC=IsoC
8 eqid BaseC=BaseC
9 initoo CCatAInitOCABaseC
10 1 2 9 sylc φABaseC
11 initoo CCatBInitOCBBaseC
12 1 3 11 sylc φBBaseC
13 7 8 1 10 12 cic φA𝑐CBffAIsoCB
14 6 13 mpbird φA𝑐CB