Metamath Proof Explorer


Theorem initoeu1w

Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of Adamek p. 102. (Contributed by AV, 6-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φ C Cat
initoeu1.a φ A InitO C
initoeu1.b φ B InitO C
Assertion initoeu1w φ A 𝑐 C B

Proof

Step Hyp Ref Expression
1 initoeu1.c φ C Cat
2 initoeu1.a φ A InitO C
3 initoeu1.b φ B InitO C
4 1 2 3 initoeu1 φ ∃! f f A Iso C B
5 euex ∃! f f A Iso C B f f A Iso C B
6 4 5 syl φ f f A Iso C B
7 eqid Iso C = Iso C
8 eqid Base C = Base C
9 initoo C Cat A InitO C A Base C
10 1 2 9 sylc φ A Base C
11 initoo C Cat B InitO C B Base C
12 1 3 11 sylc φ B Base C
13 7 8 1 10 12 cic φ A 𝑐 C B f f A Iso C B
14 6 13 mpbird φ A 𝑐 C B