Metamath Proof Explorer


Theorem euelss

Description: Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020)

Ref Expression
Assertion euelss ABxxA∃!xxB∃!xxA

Proof

Step Hyp Ref Expression
1 id ABAB
2 df-rex xAxxA
3 ancom xAxA
4 truan xAxA
5 3 4 bitri xAxA
6 5 exbii xxAxxA
7 2 6 sylbbr xxAxA
8 df-reu ∃!xB∃!xxB
9 ancom xBxB
10 truan xBxB
11 9 10 bitri xBxB
12 11 eubii ∃!xxB∃!xxB
13 8 12 sylbbr ∃!xxB∃!xB
14 reuss ABxA∃!xB∃!xA
15 1 7 13 14 syl3an ABxxA∃!xxB∃!xA
16 df-reu ∃!xA∃!xxA
17 15 16 sylib ABxxA∃!xxB∃!xxA
18 ancom xAxA
19 4 18 bitr3i xAxA
20 19 eubii ∃!xxA∃!xxA
21 17 20 sylibr ABxxA∃!xxB∃!xxA