Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
3 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
4 |
1 2 3
|
zerooval |
⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) ) |
6 |
|
elin |
⊢ ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) |
7 |
|
initoo |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
8 |
7
|
adantrd |
⊢ ( 𝐶 ∈ Cat → ( ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
9 |
6 8
|
syl5bi |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
10 |
5 9
|
sylbid |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) |
12 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
13 |
|
simpr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) |
14 |
2 3 12 13
|
iszeroo |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
15 |
14
|
biimpd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
16 |
15
|
impancom |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
17 |
11 16
|
jcai |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |