Metamath Proof Explorer


Theorem iszeroi

Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020)

Ref Expression
Assertion iszeroi ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐶 ∈ Cat → 𝐶 ∈ Cat )
2 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
3 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
4 1 2 3 zerooval ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) )
5 4 eleq2d ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) )
6 elin ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) )
7 initoo ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) )
8 7 adantrd ( 𝐶 ∈ Cat → ( ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) )
9 6 8 syl5bi ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) )
10 5 9 sylbid ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) )
11 10 imp ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) )
12 simpl ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat )
13 simpr ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) )
14 2 3 12 13 iszeroo ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) )
15 14 biimpd ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) )
16 15 impancom ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) )
17 11 16 jcai ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) )