| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 3 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 4 |
1 2 3
|
zerooval |
⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) ) |
| 6 |
|
elin |
⊢ ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) |
| 7 |
|
initoo |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
| 8 |
7
|
adantrd |
⊢ ( 𝐶 ∈ Cat → ( ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
| 9 |
6 8
|
biimtrid |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
| 10 |
5 9
|
sylbid |
⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) |
| 12 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 13 |
|
simpr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) |
| 14 |
2 3 12 13
|
iszeroo |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 15 |
14
|
biimpd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 16 |
15
|
impancom |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 17 |
11 16
|
jcai |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |