Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Initial, terminal and zero objects of a category
zeroo2
Next ⟩
oppcinito
Metamath Proof Explorer
Ascii
Unicode
Theorem
zeroo2
Description:
A zero object is an object in the base set.
(Contributed by
Zhi Wang
, 23-Oct-2025)
Ref
Expression
Hypothesis
initoo2.b
⊢
B
=
Base
C
Assertion
zeroo2
⊢
O
∈
ZeroO
⁡
C
→
O
∈
B
Proof
Step
Hyp
Ref
Expression
1
initoo2.b
⊢
B
=
Base
C
2
zeroorcl
⊢
O
∈
ZeroO
⁡
C
→
C
∈
Cat
3
iszeroi
⊢
C
∈
Cat
∧
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
∧
O
∈
InitO
⁡
C
∧
O
∈
TermO
⁡
C
4
3
simpld
⊢
C
∈
Cat
∧
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
5
2
4
mpancom
⊢
O
∈
ZeroO
⁡
C
→
O
∈
Base
C
6
5
1
eleqtrrdi
⊢
O
∈
ZeroO
⁡
C
→
O
∈
B