Metamath Proof Explorer


Theorem zeroo2

Description: A zero object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypothesis initoo2.b B = Base C
Assertion zeroo2 O ZeroO C O B

Proof

Step Hyp Ref Expression
1 initoo2.b B = Base C
2 zeroorcl O ZeroO C C Cat
3 iszeroi C Cat O ZeroO C O Base C O InitO C O TermO C
4 3 simpld C Cat O ZeroO C O Base C
5 2 4 mpancom O ZeroO C O Base C
6 5 1 eleqtrrdi O ZeroO C O B