Description: A zero object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | initoo2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| Assertion | zeroo2 | ⊢ ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoo2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | zeroorcl | ⊢ ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 3 | iszeroi | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) | |
| 4 | 3 | simpld | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) |
| 5 | 2 4 | mpancom | ⊢ ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) |
| 6 | 5 1 | eleqtrrdi | ⊢ ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ 𝐵 ) |