Metamath Proof Explorer


Theorem zeroo2

Description: A zero object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypothesis initoo2.b 𝐵 = ( Base ‘ 𝐶 )
Assertion zeroo2 ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂𝐵 )

Proof

Step Hyp Ref Expression
1 initoo2.b 𝐵 = ( Base ‘ 𝐶 )
2 zeroorcl ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝐶 ∈ Cat )
3 iszeroi ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) )
4 3 simpld ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) )
5 2 4 mpancom ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) )
6 5 1 eleqtrrdi ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂𝐵 )