Metamath Proof Explorer


Theorem oppcinito

Description: Initial objects are terminal in the opposite category. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Assertion oppcinito I InitO C I TermO oppCat C

Proof

Step Hyp Ref Expression
1 initorcl I InitO C C Cat
2 termorcl I TermO oppCat C oppCat C Cat
3 eqid oppCat C = oppCat C
4 eqid Base C = Base C
5 3 4 oppcbas Base C = Base oppCat C
6 5 termoo2 I TermO oppCat C I Base C
7 elfvex I Base C C V
8 id C V C V
9 3 8 oppccatb C V C Cat oppCat C Cat
10 6 7 9 3syl I TermO oppCat C C Cat oppCat C Cat
11 2 10 mpbird I TermO oppCat C C Cat
12 2fveq3 c = C TermO oppCat c = TermO oppCat C
13 dfinito2 InitO = c Cat TermO oppCat c
14 fvex TermO oppCat C V
15 12 13 14 fvmpt C Cat InitO C = TermO oppCat C
16 15 eleq2d C Cat I InitO C I TermO oppCat C
17 1 11 16 pm5.21nii I InitO C I TermO oppCat C