Metamath Proof Explorer


Theorem oppctermo

Description: Terminal objects are initial in the opposite category. Comments before Definition 7.4 in Adamek p. 102. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Assertion oppctermo I TermO C I InitO oppCat C

Proof

Step Hyp Ref Expression
1 termorcl I TermO C C Cat
2 initorcl I InitO oppCat C oppCat C Cat
3 eqid oppCat C = oppCat C
4 eqid Base C = Base C
5 3 4 oppcbas Base C = Base oppCat C
6 5 initoo2 I InitO oppCat C I Base C
7 elfvex I Base C C V
8 id C V C V
9 3 8 oppccatb C V C Cat oppCat C Cat
10 6 7 9 3syl I InitO oppCat C C Cat oppCat C Cat
11 2 10 mpbird I InitO oppCat C C Cat
12 2fveq3 c = C InitO oppCat c = InitO oppCat C
13 dftermo2 TermO = c Cat InitO oppCat c
14 fvex InitO oppCat C V
15 12 13 14 fvmpt C Cat TermO C = InitO oppCat C
16 15 eleq2d C Cat I TermO C I InitO oppCat C
17 1 11 16 pm5.21nii I TermO C I InitO oppCat C