Metamath Proof Explorer


Theorem oppctermo

Description: Terminal objects are initial in the opposite category. Comments before Definition 7.4 in Adamek p. 102. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Assertion oppctermo ( 𝐼 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 termorcl ( 𝐼 ∈ ( TermO ‘ 𝐶 ) → 𝐶 ∈ Cat )
2 initorcl ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → ( oppCat ‘ 𝐶 ) ∈ Cat )
3 eqid ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 )
4 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
5 3 4 oppcbas ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) )
6 5 initoo2 ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) )
7 elfvex ( 𝐼 ∈ ( Base ‘ 𝐶 ) → 𝐶 ∈ V )
8 id ( 𝐶 ∈ V → 𝐶 ∈ V )
9 3 8 oppccatb ( 𝐶 ∈ V → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) )
10 6 7 9 3syl ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) )
11 2 10 mpbird ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐶 ∈ Cat )
12 2fveq3 ( 𝑐 = 𝐶 → ( InitO ‘ ( oppCat ‘ 𝑐 ) ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )
13 dftermo2 TermO = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) )
14 fvex ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∈ V
15 12 13 14 fvmpt ( 𝐶 ∈ Cat → ( TermO ‘ 𝐶 ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )
16 15 eleq2d ( 𝐶 ∈ Cat → ( 𝐼 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) )
17 1 11 16 pm5.21nii ( 𝐼 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )