| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termorcl |
⊢ ( 𝐼 ∈ ( TermO ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 2 |
|
initorcl |
⊢ ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 3 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
3 4
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 6 |
5
|
initoo2 |
⊢ ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 7 |
|
elfvex |
⊢ ( 𝐼 ∈ ( Base ‘ 𝐶 ) → 𝐶 ∈ V ) |
| 8 |
|
id |
⊢ ( 𝐶 ∈ V → 𝐶 ∈ V ) |
| 9 |
3 8
|
oppccatb |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 10 |
6 7 9
|
3syl |
⊢ ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 11 |
2 10
|
mpbird |
⊢ ( 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 12 |
|
2fveq3 |
⊢ ( 𝑐 = 𝐶 → ( InitO ‘ ( oppCat ‘ 𝑐 ) ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 13 |
|
dftermo2 |
⊢ TermO = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) |
| 14 |
|
fvex |
⊢ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∈ V |
| 15 |
12 13 14
|
fvmpt |
⊢ ( 𝐶 ∈ Cat → ( TermO ‘ 𝐶 ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 16 |
15
|
eleq2d |
⊢ ( 𝐶 ∈ Cat → ( 𝐼 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 17 |
1 11 16
|
pm5.21nii |
⊢ ( 𝐼 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐼 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |