| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppccatb.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppccatb.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 3 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 4 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
| 5 |
4
|
oppccat |
⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 6 |
1
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 8 |
1
|
2oppccomf |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 10 |
|
fvexd |
⊢ ( 𝜑 → ( oppCat ‘ 𝑂 ) ∈ V ) |
| 11 |
7 9 2 10
|
catpropd |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝑂 ) ∈ Cat ) ) |
| 12 |
5 11
|
imbitrrid |
⊢ ( 𝜑 → ( 𝑂 ∈ Cat → 𝐶 ∈ Cat ) ) |
| 13 |
3 12
|
impbid2 |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝑂 ∈ Cat ) ) |