| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zeroorcl |
⊢ ( 𝐼 ∈ ( ZeroO ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 2 |
|
zeroorcl |
⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 3 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
3 4
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 6 |
5
|
zeroo2 |
⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
| 7 |
|
elfvex |
⊢ ( 𝐼 ∈ ( Base ‘ 𝐶 ) → 𝐶 ∈ V ) |
| 8 |
|
id |
⊢ ( 𝐶 ∈ V → 𝐶 ∈ V ) |
| 9 |
3 8
|
oppccatb |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 10 |
6 7 9
|
3syl |
⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → ( 𝐶 ∈ Cat ↔ ( oppCat ‘ 𝐶 ) ∈ Cat ) ) |
| 11 |
2 10
|
mpbird |
⊢ ( 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 12 |
|
oppcinito |
⊢ ( 𝑐 ∈ ( InitO ‘ 𝐶 ) ↔ 𝑐 ∈ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 13 |
12
|
eqriv |
⊢ ( InitO ‘ 𝐶 ) = ( TermO ‘ ( oppCat ‘ 𝐶 ) ) |
| 14 |
|
oppctermo |
⊢ ( 𝑐 ∈ ( TermO ‘ 𝐶 ) ↔ 𝑐 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 15 |
14
|
eqriv |
⊢ ( TermO ‘ 𝐶 ) = ( InitO ‘ ( oppCat ‘ 𝐶 ) ) |
| 16 |
13 15
|
ineq12i |
⊢ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) = ( ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 17 |
|
incom |
⊢ ( ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) = ( ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 18 |
16 17
|
eqtri |
⊢ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) = ( ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 19 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
| 20 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 21 |
19 4 20
|
zerooval |
⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| 22 |
3
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 23 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) |
| 24 |
22 5 23
|
zerooval |
⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) = ( ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ∩ ( TermO ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 25 |
18 21 24
|
3eqtr4a |
⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 26 |
25
|
eleq2d |
⊢ ( 𝐶 ∈ Cat → ( 𝐼 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
| 27 |
1 11 26
|
pm5.21nii |
⊢ ( 𝐼 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝐼 ∈ ( ZeroO ‘ ( oppCat ‘ 𝐶 ) ) ) |